File size: 23,935 Bytes
6d98ed7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
2023-10-13 11:10:18,371 ----------------------------------------------------------------------------------------------------
2023-10-13 11:10:18,372 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-13 11:10:18,372 ----------------------------------------------------------------------------------------------------
2023-10-13 11:10:18,372 MultiCorpus: 966 train + 219 dev + 204 test sentences
 - NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
2023-10-13 11:10:18,372 ----------------------------------------------------------------------------------------------------
2023-10-13 11:10:18,372 Train:  966 sentences
2023-10-13 11:10:18,372         (train_with_dev=False, train_with_test=False)
2023-10-13 11:10:18,372 ----------------------------------------------------------------------------------------------------
2023-10-13 11:10:18,372 Training Params:
2023-10-13 11:10:18,372  - learning_rate: "3e-05" 
2023-10-13 11:10:18,372  - mini_batch_size: "8"
2023-10-13 11:10:18,372  - max_epochs: "10"
2023-10-13 11:10:18,372  - shuffle: "True"
2023-10-13 11:10:18,372 ----------------------------------------------------------------------------------------------------
2023-10-13 11:10:18,373 Plugins:
2023-10-13 11:10:18,373  - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 11:10:18,373 ----------------------------------------------------------------------------------------------------
2023-10-13 11:10:18,373 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 11:10:18,373  - metric: "('micro avg', 'f1-score')"
2023-10-13 11:10:18,373 ----------------------------------------------------------------------------------------------------
2023-10-13 11:10:18,373 Computation:
2023-10-13 11:10:18,373  - compute on device: cuda:0
2023-10-13 11:10:18,373  - embedding storage: none
2023-10-13 11:10:18,373 ----------------------------------------------------------------------------------------------------
2023-10-13 11:10:18,373 Model training base path: "hmbench-ajmc/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5"
2023-10-13 11:10:18,373 ----------------------------------------------------------------------------------------------------
2023-10-13 11:10:18,373 ----------------------------------------------------------------------------------------------------
2023-10-13 11:10:19,028 epoch 1 - iter 12/121 - loss 3.23686547 - time (sec): 0.65 - samples/sec: 3357.97 - lr: 0.000003 - momentum: 0.000000
2023-10-13 11:10:19,789 epoch 1 - iter 24/121 - loss 3.08356686 - time (sec): 1.42 - samples/sec: 3404.65 - lr: 0.000006 - momentum: 0.000000
2023-10-13 11:10:20,522 epoch 1 - iter 36/121 - loss 2.75565966 - time (sec): 2.15 - samples/sec: 3356.65 - lr: 0.000009 - momentum: 0.000000
2023-10-13 11:10:21,260 epoch 1 - iter 48/121 - loss 2.22033244 - time (sec): 2.89 - samples/sec: 3445.03 - lr: 0.000012 - momentum: 0.000000
2023-10-13 11:10:22,022 epoch 1 - iter 60/121 - loss 1.90687504 - time (sec): 3.65 - samples/sec: 3413.67 - lr: 0.000015 - momentum: 0.000000
2023-10-13 11:10:22,689 epoch 1 - iter 72/121 - loss 1.70068116 - time (sec): 4.31 - samples/sec: 3377.30 - lr: 0.000018 - momentum: 0.000000
2023-10-13 11:10:23,464 epoch 1 - iter 84/121 - loss 1.54601736 - time (sec): 5.09 - samples/sec: 3371.31 - lr: 0.000021 - momentum: 0.000000
2023-10-13 11:10:24,156 epoch 1 - iter 96/121 - loss 1.42977512 - time (sec): 5.78 - samples/sec: 3382.42 - lr: 0.000024 - momentum: 0.000000
2023-10-13 11:10:24,867 epoch 1 - iter 108/121 - loss 1.33870901 - time (sec): 6.49 - samples/sec: 3365.58 - lr: 0.000027 - momentum: 0.000000
2023-10-13 11:10:25,655 epoch 1 - iter 120/121 - loss 1.23639310 - time (sec): 7.28 - samples/sec: 3361.78 - lr: 0.000030 - momentum: 0.000000
2023-10-13 11:10:25,726 ----------------------------------------------------------------------------------------------------
2023-10-13 11:10:25,726 EPOCH 1 done: loss 1.2258 - lr: 0.000030
2023-10-13 11:10:26,644 DEV : loss 0.36207425594329834 - f1-score (micro avg)  0.3053
2023-10-13 11:10:26,649 saving best model
2023-10-13 11:10:27,006 ----------------------------------------------------------------------------------------------------
2023-10-13 11:10:27,700 epoch 2 - iter 12/121 - loss 0.39607246 - time (sec): 0.69 - samples/sec: 3726.90 - lr: 0.000030 - momentum: 0.000000
2023-10-13 11:10:28,463 epoch 2 - iter 24/121 - loss 0.36432721 - time (sec): 1.46 - samples/sec: 3571.66 - lr: 0.000029 - momentum: 0.000000
2023-10-13 11:10:29,135 epoch 2 - iter 36/121 - loss 0.36955311 - time (sec): 2.13 - samples/sec: 3459.37 - lr: 0.000029 - momentum: 0.000000
2023-10-13 11:10:29,904 epoch 2 - iter 48/121 - loss 0.34687311 - time (sec): 2.90 - samples/sec: 3426.17 - lr: 0.000029 - momentum: 0.000000
2023-10-13 11:10:30,617 epoch 2 - iter 60/121 - loss 0.32491719 - time (sec): 3.61 - samples/sec: 3393.44 - lr: 0.000028 - momentum: 0.000000
2023-10-13 11:10:31,369 epoch 2 - iter 72/121 - loss 0.30750715 - time (sec): 4.36 - samples/sec: 3381.87 - lr: 0.000028 - momentum: 0.000000
2023-10-13 11:10:32,148 epoch 2 - iter 84/121 - loss 0.29997426 - time (sec): 5.14 - samples/sec: 3362.05 - lr: 0.000028 - momentum: 0.000000
2023-10-13 11:10:32,881 epoch 2 - iter 96/121 - loss 0.29230878 - time (sec): 5.87 - samples/sec: 3367.92 - lr: 0.000027 - momentum: 0.000000
2023-10-13 11:10:33,606 epoch 2 - iter 108/121 - loss 0.27725347 - time (sec): 6.60 - samples/sec: 3375.32 - lr: 0.000027 - momentum: 0.000000
2023-10-13 11:10:34,301 epoch 2 - iter 120/121 - loss 0.26927054 - time (sec): 7.29 - samples/sec: 3378.13 - lr: 0.000027 - momentum: 0.000000
2023-10-13 11:10:34,350 ----------------------------------------------------------------------------------------------------
2023-10-13 11:10:34,350 EPOCH 2 done: loss 0.2695 - lr: 0.000027
2023-10-13 11:10:35,153 DEV : loss 0.16814236342906952 - f1-score (micro avg)  0.6962
2023-10-13 11:10:35,159 saving best model
2023-10-13 11:10:35,771 ----------------------------------------------------------------------------------------------------
2023-10-13 11:10:36,503 epoch 3 - iter 12/121 - loss 0.15819860 - time (sec): 0.73 - samples/sec: 3394.19 - lr: 0.000026 - momentum: 0.000000
2023-10-13 11:10:37,304 epoch 3 - iter 24/121 - loss 0.16309934 - time (sec): 1.53 - samples/sec: 3229.87 - lr: 0.000026 - momentum: 0.000000
2023-10-13 11:10:38,024 epoch 3 - iter 36/121 - loss 0.15355893 - time (sec): 2.25 - samples/sec: 3108.45 - lr: 0.000026 - momentum: 0.000000
2023-10-13 11:10:38,805 epoch 3 - iter 48/121 - loss 0.14476800 - time (sec): 3.03 - samples/sec: 3151.69 - lr: 0.000025 - momentum: 0.000000
2023-10-13 11:10:39,562 epoch 3 - iter 60/121 - loss 0.15856289 - time (sec): 3.79 - samples/sec: 3198.34 - lr: 0.000025 - momentum: 0.000000
2023-10-13 11:10:40,321 epoch 3 - iter 72/121 - loss 0.15967065 - time (sec): 4.55 - samples/sec: 3238.68 - lr: 0.000025 - momentum: 0.000000
2023-10-13 11:10:41,049 epoch 3 - iter 84/121 - loss 0.15280106 - time (sec): 5.27 - samples/sec: 3290.71 - lr: 0.000024 - momentum: 0.000000
2023-10-13 11:10:41,787 epoch 3 - iter 96/121 - loss 0.15638849 - time (sec): 6.01 - samples/sec: 3282.68 - lr: 0.000024 - momentum: 0.000000
2023-10-13 11:10:42,441 epoch 3 - iter 108/121 - loss 0.15090289 - time (sec): 6.66 - samples/sec: 3289.20 - lr: 0.000024 - momentum: 0.000000
2023-10-13 11:10:43,180 epoch 3 - iter 120/121 - loss 0.14357302 - time (sec): 7.40 - samples/sec: 3309.23 - lr: 0.000023 - momentum: 0.000000
2023-10-13 11:10:43,232 ----------------------------------------------------------------------------------------------------
2023-10-13 11:10:43,232 EPOCH 3 done: loss 0.1423 - lr: 0.000023
2023-10-13 11:10:44,149 DEV : loss 0.126093789935112 - f1-score (micro avg)  0.8055
2023-10-13 11:10:44,157 saving best model
2023-10-13 11:10:44,687 ----------------------------------------------------------------------------------------------------
2023-10-13 11:10:45,522 epoch 4 - iter 12/121 - loss 0.08458435 - time (sec): 0.83 - samples/sec: 2905.79 - lr: 0.000023 - momentum: 0.000000
2023-10-13 11:10:46,450 epoch 4 - iter 24/121 - loss 0.09228534 - time (sec): 1.76 - samples/sec: 2859.11 - lr: 0.000023 - momentum: 0.000000
2023-10-13 11:10:47,240 epoch 4 - iter 36/121 - loss 0.09097094 - time (sec): 2.55 - samples/sec: 2886.20 - lr: 0.000022 - momentum: 0.000000
2023-10-13 11:10:48,030 epoch 4 - iter 48/121 - loss 0.09573211 - time (sec): 3.34 - samples/sec: 2936.27 - lr: 0.000022 - momentum: 0.000000
2023-10-13 11:10:48,873 epoch 4 - iter 60/121 - loss 0.09409124 - time (sec): 4.18 - samples/sec: 2961.19 - lr: 0.000022 - momentum: 0.000000
2023-10-13 11:10:49,726 epoch 4 - iter 72/121 - loss 0.09645539 - time (sec): 5.04 - samples/sec: 2968.80 - lr: 0.000021 - momentum: 0.000000
2023-10-13 11:10:50,507 epoch 4 - iter 84/121 - loss 0.09356465 - time (sec): 5.82 - samples/sec: 2970.75 - lr: 0.000021 - momentum: 0.000000
2023-10-13 11:10:51,306 epoch 4 - iter 96/121 - loss 0.09865829 - time (sec): 6.62 - samples/sec: 2949.74 - lr: 0.000021 - momentum: 0.000000
2023-10-13 11:10:52,131 epoch 4 - iter 108/121 - loss 0.10045796 - time (sec): 7.44 - samples/sec: 2944.22 - lr: 0.000020 - momentum: 0.000000
2023-10-13 11:10:53,065 epoch 4 - iter 120/121 - loss 0.09623331 - time (sec): 8.38 - samples/sec: 2938.18 - lr: 0.000020 - momentum: 0.000000
2023-10-13 11:10:53,130 ----------------------------------------------------------------------------------------------------
2023-10-13 11:10:53,130 EPOCH 4 done: loss 0.0959 - lr: 0.000020
2023-10-13 11:10:53,958 DEV : loss 0.11419466882944107 - f1-score (micro avg)  0.814
2023-10-13 11:10:53,963 saving best model
2023-10-13 11:10:54,443 ----------------------------------------------------------------------------------------------------
2023-10-13 11:10:55,252 epoch 5 - iter 12/121 - loss 0.07157336 - time (sec): 0.80 - samples/sec: 3282.21 - lr: 0.000020 - momentum: 0.000000
2023-10-13 11:10:55,972 epoch 5 - iter 24/121 - loss 0.07611632 - time (sec): 1.52 - samples/sec: 3279.00 - lr: 0.000019 - momentum: 0.000000
2023-10-13 11:10:56,678 epoch 5 - iter 36/121 - loss 0.06427848 - time (sec): 2.23 - samples/sec: 3257.32 - lr: 0.000019 - momentum: 0.000000
2023-10-13 11:10:57,412 epoch 5 - iter 48/121 - loss 0.07273777 - time (sec): 2.96 - samples/sec: 3296.01 - lr: 0.000019 - momentum: 0.000000
2023-10-13 11:10:58,115 epoch 5 - iter 60/121 - loss 0.07213143 - time (sec): 3.67 - samples/sec: 3344.49 - lr: 0.000018 - momentum: 0.000000
2023-10-13 11:10:58,831 epoch 5 - iter 72/121 - loss 0.06897480 - time (sec): 4.38 - samples/sec: 3370.17 - lr: 0.000018 - momentum: 0.000000
2023-10-13 11:10:59,579 epoch 5 - iter 84/121 - loss 0.06830377 - time (sec): 5.13 - samples/sec: 3398.16 - lr: 0.000018 - momentum: 0.000000
2023-10-13 11:11:00,354 epoch 5 - iter 96/121 - loss 0.06639599 - time (sec): 5.91 - samples/sec: 3361.63 - lr: 0.000017 - momentum: 0.000000
2023-10-13 11:11:01,097 epoch 5 - iter 108/121 - loss 0.06645515 - time (sec): 6.65 - samples/sec: 3375.34 - lr: 0.000017 - momentum: 0.000000
2023-10-13 11:11:01,778 epoch 5 - iter 120/121 - loss 0.06438298 - time (sec): 7.33 - samples/sec: 3356.46 - lr: 0.000017 - momentum: 0.000000
2023-10-13 11:11:01,827 ----------------------------------------------------------------------------------------------------
2023-10-13 11:11:01,827 EPOCH 5 done: loss 0.0645 - lr: 0.000017
2023-10-13 11:11:02,675 DEV : loss 0.14454086124897003 - f1-score (micro avg)  0.8054
2023-10-13 11:11:02,681 ----------------------------------------------------------------------------------------------------
2023-10-13 11:11:03,442 epoch 6 - iter 12/121 - loss 0.05954669 - time (sec): 0.76 - samples/sec: 3410.58 - lr: 0.000016 - momentum: 0.000000
2023-10-13 11:11:04,204 epoch 6 - iter 24/121 - loss 0.05911514 - time (sec): 1.52 - samples/sec: 3345.39 - lr: 0.000016 - momentum: 0.000000
2023-10-13 11:11:04,960 epoch 6 - iter 36/121 - loss 0.05197972 - time (sec): 2.28 - samples/sec: 3380.01 - lr: 0.000016 - momentum: 0.000000
2023-10-13 11:11:05,619 epoch 6 - iter 48/121 - loss 0.04652385 - time (sec): 2.94 - samples/sec: 3340.33 - lr: 0.000015 - momentum: 0.000000
2023-10-13 11:11:06,487 epoch 6 - iter 60/121 - loss 0.04783989 - time (sec): 3.80 - samples/sec: 3284.27 - lr: 0.000015 - momentum: 0.000000
2023-10-13 11:11:07,249 epoch 6 - iter 72/121 - loss 0.04450554 - time (sec): 4.57 - samples/sec: 3267.21 - lr: 0.000015 - momentum: 0.000000
2023-10-13 11:11:07,951 epoch 6 - iter 84/121 - loss 0.04614645 - time (sec): 5.27 - samples/sec: 3238.91 - lr: 0.000014 - momentum: 0.000000
2023-10-13 11:11:08,678 epoch 6 - iter 96/121 - loss 0.04321518 - time (sec): 6.00 - samples/sec: 3235.98 - lr: 0.000014 - momentum: 0.000000
2023-10-13 11:11:09,424 epoch 6 - iter 108/121 - loss 0.04354754 - time (sec): 6.74 - samples/sec: 3240.25 - lr: 0.000014 - momentum: 0.000000
2023-10-13 11:11:10,213 epoch 6 - iter 120/121 - loss 0.04690223 - time (sec): 7.53 - samples/sec: 3267.09 - lr: 0.000013 - momentum: 0.000000
2023-10-13 11:11:10,263 ----------------------------------------------------------------------------------------------------
2023-10-13 11:11:10,263 EPOCH 6 done: loss 0.0480 - lr: 0.000013
2023-10-13 11:11:11,090 DEV : loss 0.15227191150188446 - f1-score (micro avg)  0.818
2023-10-13 11:11:11,095 saving best model
2023-10-13 11:11:11,576 ----------------------------------------------------------------------------------------------------
2023-10-13 11:11:12,332 epoch 7 - iter 12/121 - loss 0.03956377 - time (sec): 0.75 - samples/sec: 3394.79 - lr: 0.000013 - momentum: 0.000000
2023-10-13 11:11:13,065 epoch 7 - iter 24/121 - loss 0.03515716 - time (sec): 1.48 - samples/sec: 3401.61 - lr: 0.000013 - momentum: 0.000000
2023-10-13 11:11:13,747 epoch 7 - iter 36/121 - loss 0.03182407 - time (sec): 2.17 - samples/sec: 3397.80 - lr: 0.000012 - momentum: 0.000000
2023-10-13 11:11:14,454 epoch 7 - iter 48/121 - loss 0.03351245 - time (sec): 2.87 - samples/sec: 3392.40 - lr: 0.000012 - momentum: 0.000000
2023-10-13 11:11:15,166 epoch 7 - iter 60/121 - loss 0.03833087 - time (sec): 3.59 - samples/sec: 3410.52 - lr: 0.000012 - momentum: 0.000000
2023-10-13 11:11:15,953 epoch 7 - iter 72/121 - loss 0.03730157 - time (sec): 4.37 - samples/sec: 3389.92 - lr: 0.000011 - momentum: 0.000000
2023-10-13 11:11:16,675 epoch 7 - iter 84/121 - loss 0.03774702 - time (sec): 5.09 - samples/sec: 3400.29 - lr: 0.000011 - momentum: 0.000000
2023-10-13 11:11:17,403 epoch 7 - iter 96/121 - loss 0.03950572 - time (sec): 5.82 - samples/sec: 3361.81 - lr: 0.000011 - momentum: 0.000000
2023-10-13 11:11:18,156 epoch 7 - iter 108/121 - loss 0.03913401 - time (sec): 6.58 - samples/sec: 3360.69 - lr: 0.000010 - momentum: 0.000000
2023-10-13 11:11:18,941 epoch 7 - iter 120/121 - loss 0.03782988 - time (sec): 7.36 - samples/sec: 3333.14 - lr: 0.000010 - momentum: 0.000000
2023-10-13 11:11:18,999 ----------------------------------------------------------------------------------------------------
2023-10-13 11:11:18,999 EPOCH 7 done: loss 0.0375 - lr: 0.000010
2023-10-13 11:11:19,763 DEV : loss 0.1678510457277298 - f1-score (micro avg)  0.8238
2023-10-13 11:11:19,768 saving best model
2023-10-13 11:11:20,230 ----------------------------------------------------------------------------------------------------
2023-10-13 11:11:21,029 epoch 8 - iter 12/121 - loss 0.02579330 - time (sec): 0.79 - samples/sec: 3386.12 - lr: 0.000010 - momentum: 0.000000
2023-10-13 11:11:21,760 epoch 8 - iter 24/121 - loss 0.02880649 - time (sec): 1.53 - samples/sec: 3406.78 - lr: 0.000009 - momentum: 0.000000
2023-10-13 11:11:22,597 epoch 8 - iter 36/121 - loss 0.02842207 - time (sec): 2.36 - samples/sec: 3260.17 - lr: 0.000009 - momentum: 0.000000
2023-10-13 11:11:23,347 epoch 8 - iter 48/121 - loss 0.02926475 - time (sec): 3.11 - samples/sec: 3281.81 - lr: 0.000009 - momentum: 0.000000
2023-10-13 11:11:24,083 epoch 8 - iter 60/121 - loss 0.02641771 - time (sec): 3.85 - samples/sec: 3333.45 - lr: 0.000008 - momentum: 0.000000
2023-10-13 11:11:24,829 epoch 8 - iter 72/121 - loss 0.02717774 - time (sec): 4.59 - samples/sec: 3308.41 - lr: 0.000008 - momentum: 0.000000
2023-10-13 11:11:25,566 epoch 8 - iter 84/121 - loss 0.02823503 - time (sec): 5.33 - samples/sec: 3278.29 - lr: 0.000008 - momentum: 0.000000
2023-10-13 11:11:26,274 epoch 8 - iter 96/121 - loss 0.02818844 - time (sec): 6.04 - samples/sec: 3280.47 - lr: 0.000008 - momentum: 0.000000
2023-10-13 11:11:26,975 epoch 8 - iter 108/121 - loss 0.02864591 - time (sec): 6.74 - samples/sec: 3317.23 - lr: 0.000007 - momentum: 0.000000
2023-10-13 11:11:27,685 epoch 8 - iter 120/121 - loss 0.02846050 - time (sec): 7.45 - samples/sec: 3309.76 - lr: 0.000007 - momentum: 0.000000
2023-10-13 11:11:27,732 ----------------------------------------------------------------------------------------------------
2023-10-13 11:11:27,733 EPOCH 8 done: loss 0.0284 - lr: 0.000007
2023-10-13 11:11:28,644 DEV : loss 0.16501988470554352 - f1-score (micro avg)  0.8385
2023-10-13 11:11:28,649 saving best model
2023-10-13 11:11:29,116 ----------------------------------------------------------------------------------------------------
2023-10-13 11:11:29,884 epoch 9 - iter 12/121 - loss 0.02637404 - time (sec): 0.77 - samples/sec: 3175.23 - lr: 0.000006 - momentum: 0.000000
2023-10-13 11:11:30,600 epoch 9 - iter 24/121 - loss 0.03206035 - time (sec): 1.48 - samples/sec: 3432.23 - lr: 0.000006 - momentum: 0.000000
2023-10-13 11:11:31,365 epoch 9 - iter 36/121 - loss 0.03177588 - time (sec): 2.25 - samples/sec: 3456.53 - lr: 0.000006 - momentum: 0.000000
2023-10-13 11:11:32,041 epoch 9 - iter 48/121 - loss 0.02688614 - time (sec): 2.92 - samples/sec: 3368.96 - lr: 0.000006 - momentum: 0.000000
2023-10-13 11:11:32,715 epoch 9 - iter 60/121 - loss 0.02569866 - time (sec): 3.60 - samples/sec: 3340.67 - lr: 0.000005 - momentum: 0.000000
2023-10-13 11:11:33,423 epoch 9 - iter 72/121 - loss 0.02485426 - time (sec): 4.31 - samples/sec: 3368.02 - lr: 0.000005 - momentum: 0.000000
2023-10-13 11:11:34,161 epoch 9 - iter 84/121 - loss 0.02371548 - time (sec): 5.04 - samples/sec: 3413.07 - lr: 0.000005 - momentum: 0.000000
2023-10-13 11:11:34,953 epoch 9 - iter 96/121 - loss 0.02197400 - time (sec): 5.84 - samples/sec: 3361.81 - lr: 0.000004 - momentum: 0.000000
2023-10-13 11:11:35,638 epoch 9 - iter 108/121 - loss 0.02375103 - time (sec): 6.52 - samples/sec: 3341.96 - lr: 0.000004 - momentum: 0.000000
2023-10-13 11:11:36,449 epoch 9 - iter 120/121 - loss 0.02309117 - time (sec): 7.33 - samples/sec: 3355.78 - lr: 0.000004 - momentum: 0.000000
2023-10-13 11:11:36,497 ----------------------------------------------------------------------------------------------------
2023-10-13 11:11:36,497 EPOCH 9 done: loss 0.0232 - lr: 0.000004
2023-10-13 11:11:37,265 DEV : loss 0.17005358636379242 - f1-score (micro avg)  0.8306
2023-10-13 11:11:37,269 ----------------------------------------------------------------------------------------------------
2023-10-13 11:11:37,953 epoch 10 - iter 12/121 - loss 0.01774069 - time (sec): 0.68 - samples/sec: 3559.64 - lr: 0.000003 - momentum: 0.000000
2023-10-13 11:11:38,720 epoch 10 - iter 24/121 - loss 0.02065838 - time (sec): 1.45 - samples/sec: 3574.69 - lr: 0.000003 - momentum: 0.000000
2023-10-13 11:11:39,427 epoch 10 - iter 36/121 - loss 0.02086100 - time (sec): 2.16 - samples/sec: 3450.79 - lr: 0.000003 - momentum: 0.000000
2023-10-13 11:11:40,124 epoch 10 - iter 48/121 - loss 0.02031963 - time (sec): 2.85 - samples/sec: 3362.98 - lr: 0.000002 - momentum: 0.000000
2023-10-13 11:11:40,892 epoch 10 - iter 60/121 - loss 0.02096082 - time (sec): 3.62 - samples/sec: 3451.73 - lr: 0.000002 - momentum: 0.000000
2023-10-13 11:11:41,615 epoch 10 - iter 72/121 - loss 0.02132037 - time (sec): 4.34 - samples/sec: 3421.31 - lr: 0.000002 - momentum: 0.000000
2023-10-13 11:11:42,362 epoch 10 - iter 84/121 - loss 0.02130246 - time (sec): 5.09 - samples/sec: 3374.54 - lr: 0.000001 - momentum: 0.000000
2023-10-13 11:11:43,063 epoch 10 - iter 96/121 - loss 0.02273356 - time (sec): 5.79 - samples/sec: 3353.51 - lr: 0.000001 - momentum: 0.000000
2023-10-13 11:11:43,822 epoch 10 - iter 108/121 - loss 0.02075952 - time (sec): 6.55 - samples/sec: 3344.69 - lr: 0.000001 - momentum: 0.000000
2023-10-13 11:11:44,676 epoch 10 - iter 120/121 - loss 0.02007672 - time (sec): 7.41 - samples/sec: 3316.90 - lr: 0.000000 - momentum: 0.000000
2023-10-13 11:11:44,728 ----------------------------------------------------------------------------------------------------
2023-10-13 11:11:44,728 EPOCH 10 done: loss 0.0199 - lr: 0.000000
2023-10-13 11:11:45,491 DEV : loss 0.1679229587316513 - f1-score (micro avg)  0.8362
2023-10-13 11:11:45,859 ----------------------------------------------------------------------------------------------------
2023-10-13 11:11:45,860 Loading model from best epoch ...
2023-10-13 11:11:47,203 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-13 11:11:47,847 
Results:
- F-score (micro) 0.8267
- F-score (macro) 0.5381
- Accuracy 0.7284

By class:
              precision    recall  f1-score   support

        pers     0.8696    0.8633    0.8664       139
       scope     0.8273    0.8915    0.8582       129
        work     0.7053    0.8375    0.7657        80
         loc     1.0000    0.1111    0.2000         9
        date     0.0000    0.0000    0.0000         3

   micro avg     0.8123    0.8417    0.8267       360
   macro avg     0.6804    0.5407    0.5381       360
weighted avg     0.8139    0.8417    0.8172       360

2023-10-13 11:11:47,848 ----------------------------------------------------------------------------------------------------