File size: 23,809 Bytes
0f25e0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
2023-10-13 10:52:51,862 ----------------------------------------------------------------------------------------------------
2023-10-13 10:52:51,863 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-13 10:52:51,863 ----------------------------------------------------------------------------------------------------
2023-10-13 10:52:51,863 MultiCorpus: 966 train + 219 dev + 204 test sentences
 - NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
2023-10-13 10:52:51,863 ----------------------------------------------------------------------------------------------------
2023-10-13 10:52:51,863 Train:  966 sentences
2023-10-13 10:52:51,863         (train_with_dev=False, train_with_test=False)
2023-10-13 10:52:51,864 ----------------------------------------------------------------------------------------------------
2023-10-13 10:52:51,864 Training Params:
2023-10-13 10:52:51,864  - learning_rate: "3e-05" 
2023-10-13 10:52:51,864  - mini_batch_size: "8"
2023-10-13 10:52:51,864  - max_epochs: "10"
2023-10-13 10:52:51,864  - shuffle: "True"
2023-10-13 10:52:51,864 ----------------------------------------------------------------------------------------------------
2023-10-13 10:52:51,864 Plugins:
2023-10-13 10:52:51,864  - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 10:52:51,864 ----------------------------------------------------------------------------------------------------
2023-10-13 10:52:51,864 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 10:52:51,864  - metric: "('micro avg', 'f1-score')"
2023-10-13 10:52:51,864 ----------------------------------------------------------------------------------------------------
2023-10-13 10:52:51,864 Computation:
2023-10-13 10:52:51,864  - compute on device: cuda:0
2023-10-13 10:52:51,864  - embedding storage: none
2023-10-13 10:52:51,864 ----------------------------------------------------------------------------------------------------
2023-10-13 10:52:51,864 Model training base path: "hmbench-ajmc/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3"
2023-10-13 10:52:51,864 ----------------------------------------------------------------------------------------------------
2023-10-13 10:52:51,864 ----------------------------------------------------------------------------------------------------
2023-10-13 10:52:52,646 epoch 1 - iter 12/121 - loss 3.17909121 - time (sec): 0.78 - samples/sec: 3191.49 - lr: 0.000003 - momentum: 0.000000
2023-10-13 10:52:53,385 epoch 1 - iter 24/121 - loss 3.04171075 - time (sec): 1.52 - samples/sec: 3278.44 - lr: 0.000006 - momentum: 0.000000
2023-10-13 10:52:54,131 epoch 1 - iter 36/121 - loss 2.68471780 - time (sec): 2.27 - samples/sec: 3268.31 - lr: 0.000009 - momentum: 0.000000
2023-10-13 10:52:54,886 epoch 1 - iter 48/121 - loss 2.18077509 - time (sec): 3.02 - samples/sec: 3339.99 - lr: 0.000012 - momentum: 0.000000
2023-10-13 10:52:55,555 epoch 1 - iter 60/121 - loss 1.89943784 - time (sec): 3.69 - samples/sec: 3351.90 - lr: 0.000015 - momentum: 0.000000
2023-10-13 10:52:56,263 epoch 1 - iter 72/121 - loss 1.70681167 - time (sec): 4.40 - samples/sec: 3323.28 - lr: 0.000018 - momentum: 0.000000
2023-10-13 10:52:57,018 epoch 1 - iter 84/121 - loss 1.55089129 - time (sec): 5.15 - samples/sec: 3344.29 - lr: 0.000021 - momentum: 0.000000
2023-10-13 10:52:57,730 epoch 1 - iter 96/121 - loss 1.41823689 - time (sec): 5.86 - samples/sec: 3357.05 - lr: 0.000024 - momentum: 0.000000
2023-10-13 10:52:58,467 epoch 1 - iter 108/121 - loss 1.31140615 - time (sec): 6.60 - samples/sec: 3327.21 - lr: 0.000027 - momentum: 0.000000
2023-10-13 10:52:59,227 epoch 1 - iter 120/121 - loss 1.20901818 - time (sec): 7.36 - samples/sec: 3343.62 - lr: 0.000030 - momentum: 0.000000
2023-10-13 10:52:59,275 ----------------------------------------------------------------------------------------------------
2023-10-13 10:52:59,276 EPOCH 1 done: loss 1.2054 - lr: 0.000030
2023-10-13 10:53:00,226 DEV : loss 0.316750168800354 - f1-score (micro avg)  0.4575
2023-10-13 10:53:00,231 saving best model
2023-10-13 10:53:00,624 ----------------------------------------------------------------------------------------------------
2023-10-13 10:53:01,327 epoch 2 - iter 12/121 - loss 0.26638783 - time (sec): 0.70 - samples/sec: 3329.16 - lr: 0.000030 - momentum: 0.000000
2023-10-13 10:53:02,158 epoch 2 - iter 24/121 - loss 0.27055334 - time (sec): 1.53 - samples/sec: 3347.41 - lr: 0.000029 - momentum: 0.000000
2023-10-13 10:53:02,889 epoch 2 - iter 36/121 - loss 0.28884933 - time (sec): 2.26 - samples/sec: 3350.55 - lr: 0.000029 - momentum: 0.000000
2023-10-13 10:53:03,616 epoch 2 - iter 48/121 - loss 0.27153507 - time (sec): 2.99 - samples/sec: 3360.27 - lr: 0.000029 - momentum: 0.000000
2023-10-13 10:53:04,305 epoch 2 - iter 60/121 - loss 0.26375086 - time (sec): 3.68 - samples/sec: 3363.97 - lr: 0.000028 - momentum: 0.000000
2023-10-13 10:53:05,026 epoch 2 - iter 72/121 - loss 0.25241819 - time (sec): 4.40 - samples/sec: 3411.47 - lr: 0.000028 - momentum: 0.000000
2023-10-13 10:53:05,811 epoch 2 - iter 84/121 - loss 0.24193642 - time (sec): 5.19 - samples/sec: 3391.97 - lr: 0.000028 - momentum: 0.000000
2023-10-13 10:53:06,479 epoch 2 - iter 96/121 - loss 0.24201310 - time (sec): 5.85 - samples/sec: 3369.37 - lr: 0.000027 - momentum: 0.000000
2023-10-13 10:53:07,162 epoch 2 - iter 108/121 - loss 0.23640591 - time (sec): 6.54 - samples/sec: 3365.98 - lr: 0.000027 - momentum: 0.000000
2023-10-13 10:53:07,871 epoch 2 - iter 120/121 - loss 0.22750859 - time (sec): 7.25 - samples/sec: 3390.32 - lr: 0.000027 - momentum: 0.000000
2023-10-13 10:53:07,942 ----------------------------------------------------------------------------------------------------
2023-10-13 10:53:07,942 EPOCH 2 done: loss 0.2265 - lr: 0.000027
2023-10-13 10:53:08,764 DEV : loss 0.14802373945713043 - f1-score (micro avg)  0.728
2023-10-13 10:53:08,770 saving best model
2023-10-13 10:53:09,250 ----------------------------------------------------------------------------------------------------
2023-10-13 10:53:10,116 epoch 3 - iter 12/121 - loss 0.15042699 - time (sec): 0.86 - samples/sec: 2892.89 - lr: 0.000026 - momentum: 0.000000
2023-10-13 10:53:10,895 epoch 3 - iter 24/121 - loss 0.14247391 - time (sec): 1.64 - samples/sec: 2899.89 - lr: 0.000026 - momentum: 0.000000
2023-10-13 10:53:11,630 epoch 3 - iter 36/121 - loss 0.13500773 - time (sec): 2.38 - samples/sec: 3007.99 - lr: 0.000026 - momentum: 0.000000
2023-10-13 10:53:12,398 epoch 3 - iter 48/121 - loss 0.14469855 - time (sec): 3.15 - samples/sec: 3033.06 - lr: 0.000025 - momentum: 0.000000
2023-10-13 10:53:13,131 epoch 3 - iter 60/121 - loss 0.14634721 - time (sec): 3.88 - samples/sec: 3073.73 - lr: 0.000025 - momentum: 0.000000
2023-10-13 10:53:13,966 epoch 3 - iter 72/121 - loss 0.14036761 - time (sec): 4.71 - samples/sec: 3076.55 - lr: 0.000025 - momentum: 0.000000
2023-10-13 10:53:14,726 epoch 3 - iter 84/121 - loss 0.12993783 - time (sec): 5.47 - samples/sec: 3094.89 - lr: 0.000024 - momentum: 0.000000
2023-10-13 10:53:15,578 epoch 3 - iter 96/121 - loss 0.12808239 - time (sec): 6.33 - samples/sec: 3097.84 - lr: 0.000024 - momentum: 0.000000
2023-10-13 10:53:16,414 epoch 3 - iter 108/121 - loss 0.12575730 - time (sec): 7.16 - samples/sec: 3039.72 - lr: 0.000024 - momentum: 0.000000
2023-10-13 10:53:17,216 epoch 3 - iter 120/121 - loss 0.12426082 - time (sec): 7.96 - samples/sec: 3090.22 - lr: 0.000023 - momentum: 0.000000
2023-10-13 10:53:17,270 ----------------------------------------------------------------------------------------------------
2023-10-13 10:53:17,270 EPOCH 3 done: loss 0.1242 - lr: 0.000023
2023-10-13 10:53:18,158 DEV : loss 0.11766723543405533 - f1-score (micro avg)  0.8489
2023-10-13 10:53:18,164 saving best model
2023-10-13 10:53:18,717 ----------------------------------------------------------------------------------------------------
2023-10-13 10:53:19,616 epoch 4 - iter 12/121 - loss 0.07434890 - time (sec): 0.90 - samples/sec: 2819.16 - lr: 0.000023 - momentum: 0.000000
2023-10-13 10:53:20,508 epoch 4 - iter 24/121 - loss 0.08274365 - time (sec): 1.79 - samples/sec: 2707.12 - lr: 0.000023 - momentum: 0.000000
2023-10-13 10:53:21,373 epoch 4 - iter 36/121 - loss 0.06977141 - time (sec): 2.65 - samples/sec: 2783.84 - lr: 0.000022 - momentum: 0.000000
2023-10-13 10:53:22,273 epoch 4 - iter 48/121 - loss 0.07499834 - time (sec): 3.55 - samples/sec: 2839.70 - lr: 0.000022 - momentum: 0.000000
2023-10-13 10:53:23,081 epoch 4 - iter 60/121 - loss 0.08046941 - time (sec): 4.36 - samples/sec: 2864.23 - lr: 0.000022 - momentum: 0.000000
2023-10-13 10:53:23,839 epoch 4 - iter 72/121 - loss 0.07741985 - time (sec): 5.12 - samples/sec: 2855.44 - lr: 0.000021 - momentum: 0.000000
2023-10-13 10:53:24,674 epoch 4 - iter 84/121 - loss 0.07963593 - time (sec): 5.95 - samples/sec: 2856.23 - lr: 0.000021 - momentum: 0.000000
2023-10-13 10:53:25,501 epoch 4 - iter 96/121 - loss 0.08226614 - time (sec): 6.78 - samples/sec: 2883.71 - lr: 0.000021 - momentum: 0.000000
2023-10-13 10:53:26,306 epoch 4 - iter 108/121 - loss 0.08636397 - time (sec): 7.59 - samples/sec: 2918.44 - lr: 0.000020 - momentum: 0.000000
2023-10-13 10:53:27,129 epoch 4 - iter 120/121 - loss 0.08610454 - time (sec): 8.41 - samples/sec: 2934.47 - lr: 0.000020 - momentum: 0.000000
2023-10-13 10:53:27,184 ----------------------------------------------------------------------------------------------------
2023-10-13 10:53:27,184 EPOCH 4 done: loss 0.0860 - lr: 0.000020
2023-10-13 10:53:27,974 DEV : loss 0.11788605898618698 - f1-score (micro avg)  0.8339
2023-10-13 10:53:27,980 ----------------------------------------------------------------------------------------------------
2023-10-13 10:53:28,776 epoch 5 - iter 12/121 - loss 0.06113326 - time (sec): 0.79 - samples/sec: 3226.47 - lr: 0.000020 - momentum: 0.000000
2023-10-13 10:53:29,565 epoch 5 - iter 24/121 - loss 0.06172437 - time (sec): 1.58 - samples/sec: 3269.17 - lr: 0.000019 - momentum: 0.000000
2023-10-13 10:53:30,391 epoch 5 - iter 36/121 - loss 0.06194669 - time (sec): 2.41 - samples/sec: 3177.27 - lr: 0.000019 - momentum: 0.000000
2023-10-13 10:53:31,182 epoch 5 - iter 48/121 - loss 0.06213729 - time (sec): 3.20 - samples/sec: 3124.14 - lr: 0.000019 - momentum: 0.000000
2023-10-13 10:53:31,876 epoch 5 - iter 60/121 - loss 0.06305799 - time (sec): 3.89 - samples/sec: 3202.91 - lr: 0.000018 - momentum: 0.000000
2023-10-13 10:53:32,589 epoch 5 - iter 72/121 - loss 0.06106691 - time (sec): 4.61 - samples/sec: 3199.91 - lr: 0.000018 - momentum: 0.000000
2023-10-13 10:53:33,306 epoch 5 - iter 84/121 - loss 0.06108503 - time (sec): 5.32 - samples/sec: 3194.25 - lr: 0.000018 - momentum: 0.000000
2023-10-13 10:53:34,083 epoch 5 - iter 96/121 - loss 0.06172086 - time (sec): 6.10 - samples/sec: 3190.68 - lr: 0.000017 - momentum: 0.000000
2023-10-13 10:53:34,852 epoch 5 - iter 108/121 - loss 0.05853778 - time (sec): 6.87 - samples/sec: 3223.07 - lr: 0.000017 - momentum: 0.000000
2023-10-13 10:53:35,627 epoch 5 - iter 120/121 - loss 0.05812999 - time (sec): 7.64 - samples/sec: 3220.68 - lr: 0.000017 - momentum: 0.000000
2023-10-13 10:53:35,679 ----------------------------------------------------------------------------------------------------
2023-10-13 10:53:35,679 EPOCH 5 done: loss 0.0587 - lr: 0.000017
2023-10-13 10:53:36,465 DEV : loss 0.11372210830450058 - f1-score (micro avg)  0.8467
2023-10-13 10:53:36,472 ----------------------------------------------------------------------------------------------------
2023-10-13 10:53:37,213 epoch 6 - iter 12/121 - loss 0.05085270 - time (sec): 0.74 - samples/sec: 3183.40 - lr: 0.000016 - momentum: 0.000000
2023-10-13 10:53:37,967 epoch 6 - iter 24/121 - loss 0.04445369 - time (sec): 1.49 - samples/sec: 3282.50 - lr: 0.000016 - momentum: 0.000000
2023-10-13 10:53:38,677 epoch 6 - iter 36/121 - loss 0.04652242 - time (sec): 2.20 - samples/sec: 3171.47 - lr: 0.000016 - momentum: 0.000000
2023-10-13 10:53:39,517 epoch 6 - iter 48/121 - loss 0.04882430 - time (sec): 3.04 - samples/sec: 3240.01 - lr: 0.000015 - momentum: 0.000000
2023-10-13 10:53:40,333 epoch 6 - iter 60/121 - loss 0.04403158 - time (sec): 3.86 - samples/sec: 3206.96 - lr: 0.000015 - momentum: 0.000000
2023-10-13 10:53:41,145 epoch 6 - iter 72/121 - loss 0.04512615 - time (sec): 4.67 - samples/sec: 3158.95 - lr: 0.000015 - momentum: 0.000000
2023-10-13 10:53:41,926 epoch 6 - iter 84/121 - loss 0.04169450 - time (sec): 5.45 - samples/sec: 3151.10 - lr: 0.000014 - momentum: 0.000000
2023-10-13 10:53:42,716 epoch 6 - iter 96/121 - loss 0.04098123 - time (sec): 6.24 - samples/sec: 3167.99 - lr: 0.000014 - momentum: 0.000000
2023-10-13 10:53:43,588 epoch 6 - iter 108/121 - loss 0.04431050 - time (sec): 7.11 - samples/sec: 3127.44 - lr: 0.000014 - momentum: 0.000000
2023-10-13 10:53:44,408 epoch 6 - iter 120/121 - loss 0.04446614 - time (sec): 7.93 - samples/sec: 3098.04 - lr: 0.000013 - momentum: 0.000000
2023-10-13 10:53:44,466 ----------------------------------------------------------------------------------------------------
2023-10-13 10:53:44,466 EPOCH 6 done: loss 0.0444 - lr: 0.000013
2023-10-13 10:53:45,326 DEV : loss 0.12393485754728317 - f1-score (micro avg)  0.8422
2023-10-13 10:53:45,332 ----------------------------------------------------------------------------------------------------
2023-10-13 10:53:46,107 epoch 7 - iter 12/121 - loss 0.02949832 - time (sec): 0.77 - samples/sec: 3092.83 - lr: 0.000013 - momentum: 0.000000
2023-10-13 10:53:46,910 epoch 7 - iter 24/121 - loss 0.02670211 - time (sec): 1.58 - samples/sec: 3071.03 - lr: 0.000013 - momentum: 0.000000
2023-10-13 10:53:47,655 epoch 7 - iter 36/121 - loss 0.02772323 - time (sec): 2.32 - samples/sec: 3273.10 - lr: 0.000012 - momentum: 0.000000
2023-10-13 10:53:48,466 epoch 7 - iter 48/121 - loss 0.02934970 - time (sec): 3.13 - samples/sec: 3232.26 - lr: 0.000012 - momentum: 0.000000
2023-10-13 10:53:49,214 epoch 7 - iter 60/121 - loss 0.02922209 - time (sec): 3.88 - samples/sec: 3237.42 - lr: 0.000012 - momentum: 0.000000
2023-10-13 10:53:49,918 epoch 7 - iter 72/121 - loss 0.03081692 - time (sec): 4.59 - samples/sec: 3222.69 - lr: 0.000011 - momentum: 0.000000
2023-10-13 10:53:50,674 epoch 7 - iter 84/121 - loss 0.03046156 - time (sec): 5.34 - samples/sec: 3168.56 - lr: 0.000011 - momentum: 0.000000
2023-10-13 10:53:51,526 epoch 7 - iter 96/121 - loss 0.03149212 - time (sec): 6.19 - samples/sec: 3158.25 - lr: 0.000011 - momentum: 0.000000
2023-10-13 10:53:52,273 epoch 7 - iter 108/121 - loss 0.03176728 - time (sec): 6.94 - samples/sec: 3160.03 - lr: 0.000010 - momentum: 0.000000
2023-10-13 10:53:53,020 epoch 7 - iter 120/121 - loss 0.03220890 - time (sec): 7.69 - samples/sec: 3191.16 - lr: 0.000010 - momentum: 0.000000
2023-10-13 10:53:53,085 ----------------------------------------------------------------------------------------------------
2023-10-13 10:53:53,085 EPOCH 7 done: loss 0.0324 - lr: 0.000010
2023-10-13 10:53:53,894 DEV : loss 0.1321217119693756 - f1-score (micro avg)  0.8557
2023-10-13 10:53:53,900 saving best model
2023-10-13 10:53:54,313 ----------------------------------------------------------------------------------------------------
2023-10-13 10:53:54,990 epoch 8 - iter 12/121 - loss 0.01637944 - time (sec): 0.68 - samples/sec: 3611.23 - lr: 0.000010 - momentum: 0.000000
2023-10-13 10:53:55,758 epoch 8 - iter 24/121 - loss 0.02220890 - time (sec): 1.44 - samples/sec: 3410.63 - lr: 0.000009 - momentum: 0.000000
2023-10-13 10:53:56,516 epoch 8 - iter 36/121 - loss 0.02475902 - time (sec): 2.20 - samples/sec: 3229.05 - lr: 0.000009 - momentum: 0.000000
2023-10-13 10:53:57,228 epoch 8 - iter 48/121 - loss 0.02561630 - time (sec): 2.91 - samples/sec: 3234.11 - lr: 0.000009 - momentum: 0.000000
2023-10-13 10:53:57,954 epoch 8 - iter 60/121 - loss 0.02205337 - time (sec): 3.64 - samples/sec: 3282.92 - lr: 0.000008 - momentum: 0.000000
2023-10-13 10:53:58,659 epoch 8 - iter 72/121 - loss 0.02736501 - time (sec): 4.34 - samples/sec: 3309.66 - lr: 0.000008 - momentum: 0.000000
2023-10-13 10:53:59,396 epoch 8 - iter 84/121 - loss 0.02660597 - time (sec): 5.08 - samples/sec: 3354.20 - lr: 0.000008 - momentum: 0.000000
2023-10-13 10:54:00,186 epoch 8 - iter 96/121 - loss 0.02589860 - time (sec): 5.87 - samples/sec: 3320.52 - lr: 0.000008 - momentum: 0.000000
2023-10-13 10:54:00,887 epoch 8 - iter 108/121 - loss 0.02658770 - time (sec): 6.57 - samples/sec: 3305.96 - lr: 0.000007 - momentum: 0.000000
2023-10-13 10:54:01,874 epoch 8 - iter 120/121 - loss 0.02552164 - time (sec): 7.56 - samples/sec: 3246.63 - lr: 0.000007 - momentum: 0.000000
2023-10-13 10:54:01,937 ----------------------------------------------------------------------------------------------------
2023-10-13 10:54:01,937 EPOCH 8 done: loss 0.0258 - lr: 0.000007
2023-10-13 10:54:02,717 DEV : loss 0.1389080435037613 - f1-score (micro avg)  0.8518
2023-10-13 10:54:02,723 ----------------------------------------------------------------------------------------------------
2023-10-13 10:54:03,477 epoch 9 - iter 12/121 - loss 0.01343012 - time (sec): 0.75 - samples/sec: 3306.45 - lr: 0.000006 - momentum: 0.000000
2023-10-13 10:54:04,235 epoch 9 - iter 24/121 - loss 0.01362673 - time (sec): 1.51 - samples/sec: 3227.59 - lr: 0.000006 - momentum: 0.000000
2023-10-13 10:54:05,023 epoch 9 - iter 36/121 - loss 0.01640262 - time (sec): 2.30 - samples/sec: 3281.85 - lr: 0.000006 - momentum: 0.000000
2023-10-13 10:54:05,835 epoch 9 - iter 48/121 - loss 0.01600270 - time (sec): 3.11 - samples/sec: 3287.63 - lr: 0.000006 - momentum: 0.000000
2023-10-13 10:54:06,588 epoch 9 - iter 60/121 - loss 0.02007674 - time (sec): 3.86 - samples/sec: 3313.10 - lr: 0.000005 - momentum: 0.000000
2023-10-13 10:54:07,335 epoch 9 - iter 72/121 - loss 0.02000602 - time (sec): 4.61 - samples/sec: 3338.46 - lr: 0.000005 - momentum: 0.000000
2023-10-13 10:54:08,083 epoch 9 - iter 84/121 - loss 0.02068938 - time (sec): 5.36 - samples/sec: 3342.98 - lr: 0.000005 - momentum: 0.000000
2023-10-13 10:54:08,776 epoch 9 - iter 96/121 - loss 0.01942837 - time (sec): 6.05 - samples/sec: 3335.99 - lr: 0.000004 - momentum: 0.000000
2023-10-13 10:54:09,451 epoch 9 - iter 108/121 - loss 0.01964516 - time (sec): 6.73 - samples/sec: 3301.39 - lr: 0.000004 - momentum: 0.000000
2023-10-13 10:54:10,108 epoch 9 - iter 120/121 - loss 0.01947091 - time (sec): 7.38 - samples/sec: 3320.85 - lr: 0.000004 - momentum: 0.000000
2023-10-13 10:54:10,177 ----------------------------------------------------------------------------------------------------
2023-10-13 10:54:10,177 EPOCH 9 done: loss 0.0197 - lr: 0.000004
2023-10-13 10:54:11,065 DEV : loss 0.1477350890636444 - f1-score (micro avg)  0.8448
2023-10-13 10:54:11,072 ----------------------------------------------------------------------------------------------------
2023-10-13 10:54:11,873 epoch 10 - iter 12/121 - loss 0.00790083 - time (sec): 0.80 - samples/sec: 2918.50 - lr: 0.000003 - momentum: 0.000000
2023-10-13 10:54:12,658 epoch 10 - iter 24/121 - loss 0.01090367 - time (sec): 1.58 - samples/sec: 3094.88 - lr: 0.000003 - momentum: 0.000000
2023-10-13 10:54:13,472 epoch 10 - iter 36/121 - loss 0.01066049 - time (sec): 2.40 - samples/sec: 3166.62 - lr: 0.000003 - momentum: 0.000000
2023-10-13 10:54:14,153 epoch 10 - iter 48/121 - loss 0.01021749 - time (sec): 3.08 - samples/sec: 3225.19 - lr: 0.000002 - momentum: 0.000000
2023-10-13 10:54:14,906 epoch 10 - iter 60/121 - loss 0.01234905 - time (sec): 3.83 - samples/sec: 3200.23 - lr: 0.000002 - momentum: 0.000000
2023-10-13 10:54:15,717 epoch 10 - iter 72/121 - loss 0.01159966 - time (sec): 4.64 - samples/sec: 3166.73 - lr: 0.000002 - momentum: 0.000000
2023-10-13 10:54:16,452 epoch 10 - iter 84/121 - loss 0.01407237 - time (sec): 5.38 - samples/sec: 3172.94 - lr: 0.000001 - momentum: 0.000000
2023-10-13 10:54:17,164 epoch 10 - iter 96/121 - loss 0.01543510 - time (sec): 6.09 - samples/sec: 3212.46 - lr: 0.000001 - momentum: 0.000000
2023-10-13 10:54:17,929 epoch 10 - iter 108/121 - loss 0.01442978 - time (sec): 6.86 - samples/sec: 3208.39 - lr: 0.000001 - momentum: 0.000000
2023-10-13 10:54:18,660 epoch 10 - iter 120/121 - loss 0.01626211 - time (sec): 7.59 - samples/sec: 3238.16 - lr: 0.000000 - momentum: 0.000000
2023-10-13 10:54:18,709 ----------------------------------------------------------------------------------------------------
2023-10-13 10:54:18,709 EPOCH 10 done: loss 0.0162 - lr: 0.000000
2023-10-13 10:54:19,504 DEV : loss 0.14863362908363342 - f1-score (micro avg)  0.8533
2023-10-13 10:54:20,002 ----------------------------------------------------------------------------------------------------
2023-10-13 10:54:20,003 Loading model from best epoch ...
2023-10-13 10:54:21,525 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-13 10:54:22,364 
Results:
- F-score (micro) 0.8149
- F-score (macro) 0.5999
- Accuracy 0.7034

By class:
              precision    recall  f1-score   support

        pers     0.7974    0.8777    0.8356       139
       scope     0.8551    0.9147    0.8839       129
        work     0.6526    0.7750    0.7086        80
         loc     0.8000    0.4444    0.5714         9
        date     0.0000    0.0000    0.0000         3

   micro avg     0.7826    0.8500    0.8149       360
   macro avg     0.6210    0.6024    0.5999       360
weighted avg     0.7793    0.8500    0.8111       360

2023-10-13 10:54:22,364 ----------------------------------------------------------------------------------------------------