File size: 23,989 Bytes
240ab77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
2023-10-13 11:05:24,965 ----------------------------------------------------------------------------------------------------
2023-10-13 11:05:24,966 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-13 11:05:24,966 ----------------------------------------------------------------------------------------------------
2023-10-13 11:05:24,966 MultiCorpus: 966 train + 219 dev + 204 test sentences
 - NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
2023-10-13 11:05:24,966 ----------------------------------------------------------------------------------------------------
2023-10-13 11:05:24,966 Train:  966 sentences
2023-10-13 11:05:24,967         (train_with_dev=False, train_with_test=False)
2023-10-13 11:05:24,967 ----------------------------------------------------------------------------------------------------
2023-10-13 11:05:24,967 Training Params:
2023-10-13 11:05:24,967  - learning_rate: "3e-05" 
2023-10-13 11:05:24,967  - mini_batch_size: "4"
2023-10-13 11:05:24,967  - max_epochs: "10"
2023-10-13 11:05:24,967  - shuffle: "True"
2023-10-13 11:05:24,967 ----------------------------------------------------------------------------------------------------
2023-10-13 11:05:24,967 Plugins:
2023-10-13 11:05:24,967  - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 11:05:24,967 ----------------------------------------------------------------------------------------------------
2023-10-13 11:05:24,967 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 11:05:24,967  - metric: "('micro avg', 'f1-score')"
2023-10-13 11:05:24,967 ----------------------------------------------------------------------------------------------------
2023-10-13 11:05:24,967 Computation:
2023-10-13 11:05:24,967  - compute on device: cuda:0
2023-10-13 11:05:24,967  - embedding storage: none
2023-10-13 11:05:24,967 ----------------------------------------------------------------------------------------------------
2023-10-13 11:05:24,967 Model training base path: "hmbench-ajmc/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5"
2023-10-13 11:05:24,967 ----------------------------------------------------------------------------------------------------
2023-10-13 11:05:24,967 ----------------------------------------------------------------------------------------------------
2023-10-13 11:05:26,068 epoch 1 - iter 24/242 - loss 3.26045040 - time (sec): 1.10 - samples/sec: 1997.04 - lr: 0.000003 - momentum: 0.000000
2023-10-13 11:05:27,168 epoch 1 - iter 48/242 - loss 2.88611384 - time (sec): 2.20 - samples/sec: 2190.45 - lr: 0.000006 - momentum: 0.000000
2023-10-13 11:05:28,240 epoch 1 - iter 72/242 - loss 2.29154480 - time (sec): 3.27 - samples/sec: 2204.10 - lr: 0.000009 - momentum: 0.000000
2023-10-13 11:05:29,304 epoch 1 - iter 96/242 - loss 1.83341707 - time (sec): 4.34 - samples/sec: 2293.36 - lr: 0.000012 - momentum: 0.000000
2023-10-13 11:05:30,397 epoch 1 - iter 120/242 - loss 1.58399035 - time (sec): 5.43 - samples/sec: 2294.08 - lr: 0.000015 - momentum: 0.000000
2023-10-13 11:05:31,429 epoch 1 - iter 144/242 - loss 1.41150946 - time (sec): 6.46 - samples/sec: 2255.49 - lr: 0.000018 - momentum: 0.000000
2023-10-13 11:05:32,514 epoch 1 - iter 168/242 - loss 1.26653071 - time (sec): 7.55 - samples/sec: 2273.95 - lr: 0.000021 - momentum: 0.000000
2023-10-13 11:05:33,561 epoch 1 - iter 192/242 - loss 1.15583293 - time (sec): 8.59 - samples/sec: 2276.18 - lr: 0.000024 - momentum: 0.000000
2023-10-13 11:05:34,597 epoch 1 - iter 216/242 - loss 1.07012297 - time (sec): 9.63 - samples/sec: 2269.55 - lr: 0.000027 - momentum: 0.000000
2023-10-13 11:05:35,676 epoch 1 - iter 240/242 - loss 0.98086424 - time (sec): 10.71 - samples/sec: 2285.79 - lr: 0.000030 - momentum: 0.000000
2023-10-13 11:05:35,771 ----------------------------------------------------------------------------------------------------
2023-10-13 11:05:35,772 EPOCH 1 done: loss 0.9715 - lr: 0.000030
2023-10-13 11:05:36,434 DEV : loss 0.22636541724205017 - f1-score (micro avg)  0.5455
2023-10-13 11:05:36,439 saving best model
2023-10-13 11:05:36,829 ----------------------------------------------------------------------------------------------------
2023-10-13 11:05:37,892 epoch 2 - iter 24/242 - loss 0.26044400 - time (sec): 1.06 - samples/sec: 2430.95 - lr: 0.000030 - momentum: 0.000000
2023-10-13 11:05:38,995 epoch 2 - iter 48/242 - loss 0.24138370 - time (sec): 2.16 - samples/sec: 2402.11 - lr: 0.000029 - momentum: 0.000000
2023-10-13 11:05:40,099 epoch 2 - iter 72/242 - loss 0.24308040 - time (sec): 3.27 - samples/sec: 2251.75 - lr: 0.000029 - momentum: 0.000000
2023-10-13 11:05:41,200 epoch 2 - iter 96/242 - loss 0.23121133 - time (sec): 4.37 - samples/sec: 2271.47 - lr: 0.000029 - momentum: 0.000000
2023-10-13 11:05:42,277 epoch 2 - iter 120/242 - loss 0.21626000 - time (sec): 5.45 - samples/sec: 2249.01 - lr: 0.000028 - momentum: 0.000000
2023-10-13 11:05:43,360 epoch 2 - iter 144/242 - loss 0.21173941 - time (sec): 6.53 - samples/sec: 2258.81 - lr: 0.000028 - momentum: 0.000000
2023-10-13 11:05:44,467 epoch 2 - iter 168/242 - loss 0.20705356 - time (sec): 7.64 - samples/sec: 2263.16 - lr: 0.000028 - momentum: 0.000000
2023-10-13 11:05:45,543 epoch 2 - iter 192/242 - loss 0.20385589 - time (sec): 8.71 - samples/sec: 2270.21 - lr: 0.000027 - momentum: 0.000000
2023-10-13 11:05:46,632 epoch 2 - iter 216/242 - loss 0.19354748 - time (sec): 9.80 - samples/sec: 2272.40 - lr: 0.000027 - momentum: 0.000000
2023-10-13 11:05:47,701 epoch 2 - iter 240/242 - loss 0.18924590 - time (sec): 10.87 - samples/sec: 2266.50 - lr: 0.000027 - momentum: 0.000000
2023-10-13 11:05:47,787 ----------------------------------------------------------------------------------------------------
2023-10-13 11:05:47,787 EPOCH 2 done: loss 0.1897 - lr: 0.000027
2023-10-13 11:05:48,562 DEV : loss 0.12835250794887543 - f1-score (micro avg)  0.7798
2023-10-13 11:05:48,567 saving best model
2023-10-13 11:05:49,076 ----------------------------------------------------------------------------------------------------
2023-10-13 11:05:50,152 epoch 3 - iter 24/242 - loss 0.11671487 - time (sec): 1.07 - samples/sec: 2298.83 - lr: 0.000026 - momentum: 0.000000
2023-10-13 11:05:51,269 epoch 3 - iter 48/242 - loss 0.13534817 - time (sec): 2.19 - samples/sec: 2253.79 - lr: 0.000026 - momentum: 0.000000
2023-10-13 11:05:52,356 epoch 3 - iter 72/242 - loss 0.12326417 - time (sec): 3.28 - samples/sec: 2131.83 - lr: 0.000026 - momentum: 0.000000
2023-10-13 11:05:53,448 epoch 3 - iter 96/242 - loss 0.11100839 - time (sec): 4.37 - samples/sec: 2184.35 - lr: 0.000025 - momentum: 0.000000
2023-10-13 11:05:54,539 epoch 3 - iter 120/242 - loss 0.13168483 - time (sec): 5.46 - samples/sec: 2217.49 - lr: 0.000025 - momentum: 0.000000
2023-10-13 11:05:55,606 epoch 3 - iter 144/242 - loss 0.13061693 - time (sec): 6.53 - samples/sec: 2255.29 - lr: 0.000025 - momentum: 0.000000
2023-10-13 11:05:56,758 epoch 3 - iter 168/242 - loss 0.12146008 - time (sec): 7.68 - samples/sec: 2259.41 - lr: 0.000024 - momentum: 0.000000
2023-10-13 11:05:57,846 epoch 3 - iter 192/242 - loss 0.12442545 - time (sec): 8.77 - samples/sec: 2250.68 - lr: 0.000024 - momentum: 0.000000
2023-10-13 11:05:58,895 epoch 3 - iter 216/242 - loss 0.11859671 - time (sec): 9.82 - samples/sec: 2233.08 - lr: 0.000024 - momentum: 0.000000
2023-10-13 11:06:00,138 epoch 3 - iter 240/242 - loss 0.11276404 - time (sec): 11.06 - samples/sec: 2215.53 - lr: 0.000023 - momentum: 0.000000
2023-10-13 11:06:00,226 ----------------------------------------------------------------------------------------------------
2023-10-13 11:06:00,226 EPOCH 3 done: loss 0.1117 - lr: 0.000023
2023-10-13 11:06:00,994 DEV : loss 0.13323190808296204 - f1-score (micro avg)  0.8194
2023-10-13 11:06:00,998 saving best model
2023-10-13 11:06:01,497 ----------------------------------------------------------------------------------------------------
2023-10-13 11:06:02,580 epoch 4 - iter 24/242 - loss 0.07762309 - time (sec): 1.08 - samples/sec: 2243.88 - lr: 0.000023 - momentum: 0.000000
2023-10-13 11:06:03,674 epoch 4 - iter 48/242 - loss 0.07491095 - time (sec): 2.17 - samples/sec: 2317.40 - lr: 0.000023 - momentum: 0.000000
2023-10-13 11:06:04,732 epoch 4 - iter 72/242 - loss 0.07455367 - time (sec): 3.23 - samples/sec: 2278.61 - lr: 0.000022 - momentum: 0.000000
2023-10-13 11:06:05,801 epoch 4 - iter 96/242 - loss 0.07298124 - time (sec): 4.30 - samples/sec: 2281.83 - lr: 0.000022 - momentum: 0.000000
2023-10-13 11:06:06,880 epoch 4 - iter 120/242 - loss 0.07436689 - time (sec): 5.38 - samples/sec: 2303.54 - lr: 0.000022 - momentum: 0.000000
2023-10-13 11:06:07,956 epoch 4 - iter 144/242 - loss 0.07580398 - time (sec): 6.45 - samples/sec: 2316.56 - lr: 0.000021 - momentum: 0.000000
2023-10-13 11:06:09,007 epoch 4 - iter 168/242 - loss 0.07131010 - time (sec): 7.50 - samples/sec: 2302.79 - lr: 0.000021 - momentum: 0.000000
2023-10-13 11:06:10,081 epoch 4 - iter 192/242 - loss 0.07415322 - time (sec): 8.58 - samples/sec: 2275.06 - lr: 0.000021 - momentum: 0.000000
2023-10-13 11:06:11,158 epoch 4 - iter 216/242 - loss 0.07568736 - time (sec): 9.66 - samples/sec: 2269.11 - lr: 0.000020 - momentum: 0.000000
2023-10-13 11:06:12,274 epoch 4 - iter 240/242 - loss 0.07358843 - time (sec): 10.77 - samples/sec: 2284.71 - lr: 0.000020 - momentum: 0.000000
2023-10-13 11:06:12,366 ----------------------------------------------------------------------------------------------------
2023-10-13 11:06:12,367 EPOCH 4 done: loss 0.0733 - lr: 0.000020
2023-10-13 11:06:13,140 DEV : loss 0.15198326110839844 - f1-score (micro avg)  0.8235
2023-10-13 11:06:13,144 saving best model
2023-10-13 11:06:13,640 ----------------------------------------------------------------------------------------------------
2023-10-13 11:06:14,721 epoch 5 - iter 24/242 - loss 0.07274525 - time (sec): 1.08 - samples/sec: 2450.06 - lr: 0.000020 - momentum: 0.000000
2023-10-13 11:06:15,798 epoch 5 - iter 48/242 - loss 0.06649204 - time (sec): 2.16 - samples/sec: 2319.17 - lr: 0.000019 - momentum: 0.000000
2023-10-13 11:06:16,864 epoch 5 - iter 72/242 - loss 0.05377757 - time (sec): 3.22 - samples/sec: 2256.18 - lr: 0.000019 - momentum: 0.000000
2023-10-13 11:06:17,955 epoch 5 - iter 96/242 - loss 0.06363114 - time (sec): 4.31 - samples/sec: 2266.28 - lr: 0.000019 - momentum: 0.000000
2023-10-13 11:06:19,018 epoch 5 - iter 120/242 - loss 0.06437488 - time (sec): 5.38 - samples/sec: 2282.19 - lr: 0.000018 - momentum: 0.000000
2023-10-13 11:06:20,080 epoch 5 - iter 144/242 - loss 0.05925376 - time (sec): 6.44 - samples/sec: 2295.61 - lr: 0.000018 - momentum: 0.000000
2023-10-13 11:06:21,135 epoch 5 - iter 168/242 - loss 0.05949345 - time (sec): 7.49 - samples/sec: 2327.46 - lr: 0.000018 - momentum: 0.000000
2023-10-13 11:06:22,293 epoch 5 - iter 192/242 - loss 0.05779375 - time (sec): 8.65 - samples/sec: 2295.53 - lr: 0.000017 - momentum: 0.000000
2023-10-13 11:06:23,434 epoch 5 - iter 216/242 - loss 0.05891234 - time (sec): 9.79 - samples/sec: 2292.53 - lr: 0.000017 - momentum: 0.000000
2023-10-13 11:06:24,504 epoch 5 - iter 240/242 - loss 0.05658195 - time (sec): 10.86 - samples/sec: 2265.63 - lr: 0.000017 - momentum: 0.000000
2023-10-13 11:06:24,592 ----------------------------------------------------------------------------------------------------
2023-10-13 11:06:24,592 EPOCH 5 done: loss 0.0566 - lr: 0.000017
2023-10-13 11:06:25,388 DEV : loss 0.1912955939769745 - f1-score (micro avg)  0.8244
2023-10-13 11:06:25,394 saving best model
2023-10-13 11:06:25,910 ----------------------------------------------------------------------------------------------------
2023-10-13 11:06:27,018 epoch 6 - iter 24/242 - loss 0.06617410 - time (sec): 1.11 - samples/sec: 2341.85 - lr: 0.000016 - momentum: 0.000000
2023-10-13 11:06:28,113 epoch 6 - iter 48/242 - loss 0.05850652 - time (sec): 2.20 - samples/sec: 2312.88 - lr: 0.000016 - momentum: 0.000000
2023-10-13 11:06:29,189 epoch 6 - iter 72/242 - loss 0.05073463 - time (sec): 3.28 - samples/sec: 2349.60 - lr: 0.000016 - momentum: 0.000000
2023-10-13 11:06:30,249 epoch 6 - iter 96/242 - loss 0.04505559 - time (sec): 4.34 - samples/sec: 2262.10 - lr: 0.000015 - momentum: 0.000000
2023-10-13 11:06:31,358 epoch 6 - iter 120/242 - loss 0.04664781 - time (sec): 5.45 - samples/sec: 2294.26 - lr: 0.000015 - momentum: 0.000000
2023-10-13 11:06:32,443 epoch 6 - iter 144/242 - loss 0.04235768 - time (sec): 6.53 - samples/sec: 2284.89 - lr: 0.000015 - momentum: 0.000000
2023-10-13 11:06:33,487 epoch 6 - iter 168/242 - loss 0.04469986 - time (sec): 7.57 - samples/sec: 2252.76 - lr: 0.000014 - momentum: 0.000000
2023-10-13 11:06:34,559 epoch 6 - iter 192/242 - loss 0.04069028 - time (sec): 8.65 - samples/sec: 2243.91 - lr: 0.000014 - momentum: 0.000000
2023-10-13 11:06:35,638 epoch 6 - iter 216/242 - loss 0.04199094 - time (sec): 9.73 - samples/sec: 2246.12 - lr: 0.000014 - momentum: 0.000000
2023-10-13 11:06:36,707 epoch 6 - iter 240/242 - loss 0.04314476 - time (sec): 10.79 - samples/sec: 2279.24 - lr: 0.000013 - momentum: 0.000000
2023-10-13 11:06:36,787 ----------------------------------------------------------------------------------------------------
2023-10-13 11:06:36,787 EPOCH 6 done: loss 0.0432 - lr: 0.000013
2023-10-13 11:06:37,614 DEV : loss 0.18537166714668274 - f1-score (micro avg)  0.8366
2023-10-13 11:06:37,619 saving best model
2023-10-13 11:06:38,105 ----------------------------------------------------------------------------------------------------
2023-10-13 11:06:39,174 epoch 7 - iter 24/242 - loss 0.01600020 - time (sec): 1.06 - samples/sec: 2410.61 - lr: 0.000013 - momentum: 0.000000
2023-10-13 11:06:40,249 epoch 7 - iter 48/242 - loss 0.02047617 - time (sec): 2.13 - samples/sec: 2366.74 - lr: 0.000013 - momentum: 0.000000
2023-10-13 11:06:41,298 epoch 7 - iter 72/242 - loss 0.02035596 - time (sec): 3.18 - samples/sec: 2312.63 - lr: 0.000012 - momentum: 0.000000
2023-10-13 11:06:42,362 epoch 7 - iter 96/242 - loss 0.02688458 - time (sec): 4.25 - samples/sec: 2295.53 - lr: 0.000012 - momentum: 0.000000
2023-10-13 11:06:43,418 epoch 7 - iter 120/242 - loss 0.03084187 - time (sec): 5.30 - samples/sec: 2306.37 - lr: 0.000012 - momentum: 0.000000
2023-10-13 11:06:44,530 epoch 7 - iter 144/242 - loss 0.02784585 - time (sec): 6.42 - samples/sec: 2310.41 - lr: 0.000011 - momentum: 0.000000
2023-10-13 11:06:45,592 epoch 7 - iter 168/242 - loss 0.02810855 - time (sec): 7.48 - samples/sec: 2316.89 - lr: 0.000011 - momentum: 0.000000
2023-10-13 11:06:46,663 epoch 7 - iter 192/242 - loss 0.02898516 - time (sec): 8.55 - samples/sec: 2289.84 - lr: 0.000011 - momentum: 0.000000
2023-10-13 11:06:47,755 epoch 7 - iter 216/242 - loss 0.03038159 - time (sec): 9.64 - samples/sec: 2292.36 - lr: 0.000010 - momentum: 0.000000
2023-10-13 11:06:48,838 epoch 7 - iter 240/242 - loss 0.02942164 - time (sec): 10.72 - samples/sec: 2287.96 - lr: 0.000010 - momentum: 0.000000
2023-10-13 11:06:48,926 ----------------------------------------------------------------------------------------------------
2023-10-13 11:06:48,926 EPOCH 7 done: loss 0.0292 - lr: 0.000010
2023-10-13 11:06:49,699 DEV : loss 0.19361057877540588 - f1-score (micro avg)  0.8267
2023-10-13 11:06:49,705 ----------------------------------------------------------------------------------------------------
2023-10-13 11:06:50,807 epoch 8 - iter 24/242 - loss 0.02404239 - time (sec): 1.10 - samples/sec: 2441.79 - lr: 0.000010 - momentum: 0.000000
2023-10-13 11:06:51,860 epoch 8 - iter 48/242 - loss 0.02940480 - time (sec): 2.15 - samples/sec: 2412.74 - lr: 0.000009 - momentum: 0.000000
2023-10-13 11:06:52,944 epoch 8 - iter 72/242 - loss 0.02453911 - time (sec): 3.24 - samples/sec: 2378.28 - lr: 0.000009 - momentum: 0.000000
2023-10-13 11:06:54,003 epoch 8 - iter 96/242 - loss 0.02656054 - time (sec): 4.30 - samples/sec: 2377.14 - lr: 0.000009 - momentum: 0.000000
2023-10-13 11:06:55,064 epoch 8 - iter 120/242 - loss 0.02321820 - time (sec): 5.36 - samples/sec: 2394.25 - lr: 0.000008 - momentum: 0.000000
2023-10-13 11:06:56,131 epoch 8 - iter 144/242 - loss 0.02216193 - time (sec): 6.42 - samples/sec: 2365.89 - lr: 0.000008 - momentum: 0.000000
2023-10-13 11:06:57,207 epoch 8 - iter 168/242 - loss 0.02347826 - time (sec): 7.50 - samples/sec: 2330.07 - lr: 0.000008 - momentum: 0.000000
2023-10-13 11:06:58,256 epoch 8 - iter 192/242 - loss 0.02405429 - time (sec): 8.55 - samples/sec: 2317.08 - lr: 0.000007 - momentum: 0.000000
2023-10-13 11:06:59,301 epoch 8 - iter 216/242 - loss 0.02396532 - time (sec): 9.60 - samples/sec: 2330.16 - lr: 0.000007 - momentum: 0.000000
2023-10-13 11:07:00,352 epoch 8 - iter 240/242 - loss 0.02408148 - time (sec): 10.65 - samples/sec: 2316.55 - lr: 0.000007 - momentum: 0.000000
2023-10-13 11:07:00,434 ----------------------------------------------------------------------------------------------------
2023-10-13 11:07:00,434 EPOCH 8 done: loss 0.0240 - lr: 0.000007
2023-10-13 11:07:01,228 DEV : loss 0.20021933317184448 - f1-score (micro avg)  0.8436
2023-10-13 11:07:01,233 saving best model
2023-10-13 11:07:01,700 ----------------------------------------------------------------------------------------------------
2023-10-13 11:07:02,768 epoch 9 - iter 24/242 - loss 0.01550654 - time (sec): 1.07 - samples/sec: 2285.05 - lr: 0.000006 - momentum: 0.000000
2023-10-13 11:07:03,832 epoch 9 - iter 48/242 - loss 0.02270449 - time (sec): 2.13 - samples/sec: 2390.28 - lr: 0.000006 - momentum: 0.000000
2023-10-13 11:07:04,912 epoch 9 - iter 72/242 - loss 0.02250225 - time (sec): 3.21 - samples/sec: 2420.69 - lr: 0.000006 - momentum: 0.000000
2023-10-13 11:07:05,950 epoch 9 - iter 96/242 - loss 0.01864297 - time (sec): 4.25 - samples/sec: 2319.14 - lr: 0.000005 - momentum: 0.000000
2023-10-13 11:07:06,989 epoch 9 - iter 120/242 - loss 0.01711462 - time (sec): 5.29 - samples/sec: 2273.59 - lr: 0.000005 - momentum: 0.000000
2023-10-13 11:07:08,035 epoch 9 - iter 144/242 - loss 0.01565846 - time (sec): 6.33 - samples/sec: 2289.88 - lr: 0.000005 - momentum: 0.000000
2023-10-13 11:07:09,117 epoch 9 - iter 168/242 - loss 0.01575760 - time (sec): 7.41 - samples/sec: 2321.46 - lr: 0.000004 - momentum: 0.000000
2023-10-13 11:07:10,201 epoch 9 - iter 192/242 - loss 0.01432253 - time (sec): 8.50 - samples/sec: 2308.51 - lr: 0.000004 - momentum: 0.000000
2023-10-13 11:07:11,232 epoch 9 - iter 216/242 - loss 0.01599132 - time (sec): 9.53 - samples/sec: 2286.85 - lr: 0.000004 - momentum: 0.000000
2023-10-13 11:07:12,331 epoch 9 - iter 240/242 - loss 0.01606926 - time (sec): 10.63 - samples/sec: 2315.03 - lr: 0.000003 - momentum: 0.000000
2023-10-13 11:07:12,413 ----------------------------------------------------------------------------------------------------
2023-10-13 11:07:12,413 EPOCH 9 done: loss 0.0163 - lr: 0.000003
2023-10-13 11:07:13,169 DEV : loss 0.1932135969400406 - f1-score (micro avg)  0.8416
2023-10-13 11:07:13,174 ----------------------------------------------------------------------------------------------------
2023-10-13 11:07:14,212 epoch 10 - iter 24/242 - loss 0.02167304 - time (sec): 1.04 - samples/sec: 2341.97 - lr: 0.000003 - momentum: 0.000000
2023-10-13 11:07:15,311 epoch 10 - iter 48/242 - loss 0.01936270 - time (sec): 2.14 - samples/sec: 2426.22 - lr: 0.000003 - momentum: 0.000000
2023-10-13 11:07:16,378 epoch 10 - iter 72/242 - loss 0.01709001 - time (sec): 3.20 - samples/sec: 2323.76 - lr: 0.000002 - momentum: 0.000000
2023-10-13 11:07:17,441 epoch 10 - iter 96/242 - loss 0.01646947 - time (sec): 4.27 - samples/sec: 2249.78 - lr: 0.000002 - momentum: 0.000000
2023-10-13 11:07:18,532 epoch 10 - iter 120/242 - loss 0.01471660 - time (sec): 5.36 - samples/sec: 2333.19 - lr: 0.000002 - momentum: 0.000000
2023-10-13 11:07:19,616 epoch 10 - iter 144/242 - loss 0.01419476 - time (sec): 6.44 - samples/sec: 2307.73 - lr: 0.000001 - momentum: 0.000000
2023-10-13 11:07:20,684 epoch 10 - iter 168/242 - loss 0.01495178 - time (sec): 7.51 - samples/sec: 2288.09 - lr: 0.000001 - momentum: 0.000000
2023-10-13 11:07:21,742 epoch 10 - iter 192/242 - loss 0.01644886 - time (sec): 8.57 - samples/sec: 2267.34 - lr: 0.000001 - momentum: 0.000000
2023-10-13 11:07:22,818 epoch 10 - iter 216/242 - loss 0.01509444 - time (sec): 9.64 - samples/sec: 2272.31 - lr: 0.000000 - momentum: 0.000000
2023-10-13 11:07:23,922 epoch 10 - iter 240/242 - loss 0.01457994 - time (sec): 10.75 - samples/sec: 2285.62 - lr: 0.000000 - momentum: 0.000000
2023-10-13 11:07:24,003 ----------------------------------------------------------------------------------------------------
2023-10-13 11:07:24,004 EPOCH 10 done: loss 0.0145 - lr: 0.000000
2023-10-13 11:07:24,763 DEV : loss 0.20257213711738586 - f1-score (micro avg)  0.8408
2023-10-13 11:07:25,119 ----------------------------------------------------------------------------------------------------
2023-10-13 11:07:25,121 Loading model from best epoch ...
2023-10-13 11:07:26,541 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-13 11:07:27,369 
Results:
- F-score (micro) 0.8295
- F-score (macro) 0.5622
- Accuracy 0.7255

By class:
              precision    recall  f1-score   support

        pers     0.8414    0.8777    0.8592       139
       scope     0.8633    0.9302    0.8955       129
        work     0.6977    0.7500    0.7229        80
         loc     0.6667    0.2222    0.3333         9
        date     0.0000    0.0000    0.0000         3

   micro avg     0.8150    0.8444    0.8295       360
   macro avg     0.6138    0.5560    0.5622       360
weighted avg     0.8059    0.8444    0.8216       360

2023-10-13 11:07:27,369 ----------------------------------------------------------------------------------------------------