File size: 23,916 Bytes
7bcf3d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
2023-10-17 08:35:02,192 ----------------------------------------------------------------------------------------------------
2023-10-17 08:35:02,193 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): ElectraModel(
      (embeddings): ElectraEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): ElectraEncoder(
        (layer): ModuleList(
          (0-11): 12 x ElectraLayer(
            (attention): ElectraAttention(
              (self): ElectraSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): ElectraSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): ElectraIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): ElectraOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-17 08:35:02,193 ----------------------------------------------------------------------------------------------------
2023-10-17 08:35:02,193 MultiCorpus: 1100 train + 206 dev + 240 test sentences
 - NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
2023-10-17 08:35:02,193 ----------------------------------------------------------------------------------------------------
2023-10-17 08:35:02,193 Train:  1100 sentences
2023-10-17 08:35:02,193         (train_with_dev=False, train_with_test=False)
2023-10-17 08:35:02,193 ----------------------------------------------------------------------------------------------------
2023-10-17 08:35:02,193 Training Params:
2023-10-17 08:35:02,193  - learning_rate: "5e-05" 
2023-10-17 08:35:02,193  - mini_batch_size: "8"
2023-10-17 08:35:02,193  - max_epochs: "10"
2023-10-17 08:35:02,193  - shuffle: "True"
2023-10-17 08:35:02,193 ----------------------------------------------------------------------------------------------------
2023-10-17 08:35:02,193 Plugins:
2023-10-17 08:35:02,194  - TensorboardLogger
2023-10-17 08:35:02,194  - LinearScheduler | warmup_fraction: '0.1'
2023-10-17 08:35:02,194 ----------------------------------------------------------------------------------------------------
2023-10-17 08:35:02,194 Final evaluation on model from best epoch (best-model.pt)
2023-10-17 08:35:02,194  - metric: "('micro avg', 'f1-score')"
2023-10-17 08:35:02,194 ----------------------------------------------------------------------------------------------------
2023-10-17 08:35:02,194 Computation:
2023-10-17 08:35:02,194  - compute on device: cuda:0
2023-10-17 08:35:02,194  - embedding storage: none
2023-10-17 08:35:02,194 ----------------------------------------------------------------------------------------------------
2023-10-17 08:35:02,194 Model training base path: "hmbench-ajmc/de-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2"
2023-10-17 08:35:02,194 ----------------------------------------------------------------------------------------------------
2023-10-17 08:35:02,194 ----------------------------------------------------------------------------------------------------
2023-10-17 08:35:02,194 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-17 08:35:02,926 epoch 1 - iter 13/138 - loss 4.22040289 - time (sec): 0.73 - samples/sec: 2911.78 - lr: 0.000004 - momentum: 0.000000
2023-10-17 08:35:03,651 epoch 1 - iter 26/138 - loss 3.70465772 - time (sec): 1.46 - samples/sec: 2775.13 - lr: 0.000009 - momentum: 0.000000
2023-10-17 08:35:04,368 epoch 1 - iter 39/138 - loss 3.00403495 - time (sec): 2.17 - samples/sec: 2774.98 - lr: 0.000014 - momentum: 0.000000
2023-10-17 08:35:05,127 epoch 1 - iter 52/138 - loss 2.50089604 - time (sec): 2.93 - samples/sec: 2741.49 - lr: 0.000018 - momentum: 0.000000
2023-10-17 08:35:05,943 epoch 1 - iter 65/138 - loss 2.07745839 - time (sec): 3.75 - samples/sec: 2764.64 - lr: 0.000023 - momentum: 0.000000
2023-10-17 08:35:06,711 epoch 1 - iter 78/138 - loss 1.81431920 - time (sec): 4.52 - samples/sec: 2781.72 - lr: 0.000028 - momentum: 0.000000
2023-10-17 08:35:07,462 epoch 1 - iter 91/138 - loss 1.59917697 - time (sec): 5.27 - samples/sec: 2803.24 - lr: 0.000033 - momentum: 0.000000
2023-10-17 08:35:08,228 epoch 1 - iter 104/138 - loss 1.43328790 - time (sec): 6.03 - samples/sec: 2814.17 - lr: 0.000037 - momentum: 0.000000
2023-10-17 08:35:08,990 epoch 1 - iter 117/138 - loss 1.30451502 - time (sec): 6.80 - samples/sec: 2833.88 - lr: 0.000042 - momentum: 0.000000
2023-10-17 08:35:09,780 epoch 1 - iter 130/138 - loss 1.20666017 - time (sec): 7.59 - samples/sec: 2828.47 - lr: 0.000047 - momentum: 0.000000
2023-10-17 08:35:10,283 ----------------------------------------------------------------------------------------------------
2023-10-17 08:35:10,283 EPOCH 1 done: loss 1.1565 - lr: 0.000047
2023-10-17 08:35:11,092 DEV : loss 0.20371423661708832 - f1-score (micro avg)  0.6853
2023-10-17 08:35:11,097 saving best model
2023-10-17 08:35:11,441 ----------------------------------------------------------------------------------------------------
2023-10-17 08:35:12,205 epoch 2 - iter 13/138 - loss 0.18510989 - time (sec): 0.76 - samples/sec: 2908.46 - lr: 0.000050 - momentum: 0.000000
2023-10-17 08:35:12,987 epoch 2 - iter 26/138 - loss 0.22286473 - time (sec): 1.54 - samples/sec: 3015.76 - lr: 0.000049 - momentum: 0.000000
2023-10-17 08:35:13,732 epoch 2 - iter 39/138 - loss 0.21354263 - time (sec): 2.29 - samples/sec: 2992.66 - lr: 0.000048 - momentum: 0.000000
2023-10-17 08:35:14,511 epoch 2 - iter 52/138 - loss 0.20370386 - time (sec): 3.07 - samples/sec: 2972.89 - lr: 0.000048 - momentum: 0.000000
2023-10-17 08:35:15,209 epoch 2 - iter 65/138 - loss 0.19557993 - time (sec): 3.77 - samples/sec: 2942.96 - lr: 0.000047 - momentum: 0.000000
2023-10-17 08:35:15,959 epoch 2 - iter 78/138 - loss 0.18670587 - time (sec): 4.52 - samples/sec: 2887.25 - lr: 0.000047 - momentum: 0.000000
2023-10-17 08:35:16,651 epoch 2 - iter 91/138 - loss 0.18106996 - time (sec): 5.21 - samples/sec: 2857.52 - lr: 0.000046 - momentum: 0.000000
2023-10-17 08:35:17,408 epoch 2 - iter 104/138 - loss 0.17656932 - time (sec): 5.97 - samples/sec: 2896.66 - lr: 0.000046 - momentum: 0.000000
2023-10-17 08:35:18,168 epoch 2 - iter 117/138 - loss 0.17142517 - time (sec): 6.73 - samples/sec: 2880.42 - lr: 0.000045 - momentum: 0.000000
2023-10-17 08:35:18,911 epoch 2 - iter 130/138 - loss 0.17318261 - time (sec): 7.47 - samples/sec: 2888.38 - lr: 0.000045 - momentum: 0.000000
2023-10-17 08:35:19,343 ----------------------------------------------------------------------------------------------------
2023-10-17 08:35:19,344 EPOCH 2 done: loss 0.1682 - lr: 0.000045
2023-10-17 08:35:19,974 DEV : loss 0.15141892433166504 - f1-score (micro avg)  0.8127
2023-10-17 08:35:19,979 saving best model
2023-10-17 08:35:20,422 ----------------------------------------------------------------------------------------------------
2023-10-17 08:35:21,203 epoch 3 - iter 13/138 - loss 0.10718037 - time (sec): 0.78 - samples/sec: 2872.78 - lr: 0.000044 - momentum: 0.000000
2023-10-17 08:35:21,944 epoch 3 - iter 26/138 - loss 0.09491367 - time (sec): 1.52 - samples/sec: 2859.72 - lr: 0.000043 - momentum: 0.000000
2023-10-17 08:35:22,667 epoch 3 - iter 39/138 - loss 0.10218904 - time (sec): 2.24 - samples/sec: 2925.36 - lr: 0.000043 - momentum: 0.000000
2023-10-17 08:35:23,382 epoch 3 - iter 52/138 - loss 0.11929519 - time (sec): 2.95 - samples/sec: 2918.24 - lr: 0.000042 - momentum: 0.000000
2023-10-17 08:35:24,120 epoch 3 - iter 65/138 - loss 0.10689042 - time (sec): 3.69 - samples/sec: 2929.70 - lr: 0.000042 - momentum: 0.000000
2023-10-17 08:35:24,820 epoch 3 - iter 78/138 - loss 0.10328288 - time (sec): 4.39 - samples/sec: 2895.41 - lr: 0.000041 - momentum: 0.000000
2023-10-17 08:35:25,584 epoch 3 - iter 91/138 - loss 0.10884179 - time (sec): 5.16 - samples/sec: 2943.16 - lr: 0.000041 - momentum: 0.000000
2023-10-17 08:35:26,296 epoch 3 - iter 104/138 - loss 0.10748961 - time (sec): 5.87 - samples/sec: 2897.24 - lr: 0.000040 - momentum: 0.000000
2023-10-17 08:35:27,061 epoch 3 - iter 117/138 - loss 0.10155459 - time (sec): 6.63 - samples/sec: 2914.05 - lr: 0.000040 - momentum: 0.000000
2023-10-17 08:35:27,789 epoch 3 - iter 130/138 - loss 0.10365295 - time (sec): 7.36 - samples/sec: 2909.58 - lr: 0.000039 - momentum: 0.000000
2023-10-17 08:35:28,255 ----------------------------------------------------------------------------------------------------
2023-10-17 08:35:28,255 EPOCH 3 done: loss 0.1017 - lr: 0.000039
2023-10-17 08:35:28,989 DEV : loss 0.1499420553445816 - f1-score (micro avg)  0.8242
2023-10-17 08:35:28,994 saving best model
2023-10-17 08:35:29,427 ----------------------------------------------------------------------------------------------------
2023-10-17 08:35:30,170 epoch 4 - iter 13/138 - loss 0.08215706 - time (sec): 0.74 - samples/sec: 2889.38 - lr: 0.000038 - momentum: 0.000000
2023-10-17 08:35:30,893 epoch 4 - iter 26/138 - loss 0.09423860 - time (sec): 1.46 - samples/sec: 2903.96 - lr: 0.000038 - momentum: 0.000000
2023-10-17 08:35:31,658 epoch 4 - iter 39/138 - loss 0.07897657 - time (sec): 2.23 - samples/sec: 3006.49 - lr: 0.000037 - momentum: 0.000000
2023-10-17 08:35:32,376 epoch 4 - iter 52/138 - loss 0.07584959 - time (sec): 2.95 - samples/sec: 2960.47 - lr: 0.000037 - momentum: 0.000000
2023-10-17 08:35:33,139 epoch 4 - iter 65/138 - loss 0.07486259 - time (sec): 3.71 - samples/sec: 2962.15 - lr: 0.000036 - momentum: 0.000000
2023-10-17 08:35:33,888 epoch 4 - iter 78/138 - loss 0.07396912 - time (sec): 4.46 - samples/sec: 2963.46 - lr: 0.000036 - momentum: 0.000000
2023-10-17 08:35:34,650 epoch 4 - iter 91/138 - loss 0.07816740 - time (sec): 5.22 - samples/sec: 2944.53 - lr: 0.000035 - momentum: 0.000000
2023-10-17 08:35:35,356 epoch 4 - iter 104/138 - loss 0.07634711 - time (sec): 5.93 - samples/sec: 2908.55 - lr: 0.000035 - momentum: 0.000000
2023-10-17 08:35:36,161 epoch 4 - iter 117/138 - loss 0.07445357 - time (sec): 6.73 - samples/sec: 2928.58 - lr: 0.000034 - momentum: 0.000000
2023-10-17 08:35:36,888 epoch 4 - iter 130/138 - loss 0.07280530 - time (sec): 7.46 - samples/sec: 2896.65 - lr: 0.000034 - momentum: 0.000000
2023-10-17 08:35:37,316 ----------------------------------------------------------------------------------------------------
2023-10-17 08:35:37,316 EPOCH 4 done: loss 0.0765 - lr: 0.000034
2023-10-17 08:35:37,955 DEV : loss 0.142630472779274 - f1-score (micro avg)  0.8541
2023-10-17 08:35:37,960 saving best model
2023-10-17 08:35:38,389 ----------------------------------------------------------------------------------------------------
2023-10-17 08:35:39,240 epoch 5 - iter 13/138 - loss 0.03121562 - time (sec): 0.85 - samples/sec: 2885.84 - lr: 0.000033 - momentum: 0.000000
2023-10-17 08:35:39,959 epoch 5 - iter 26/138 - loss 0.04200227 - time (sec): 1.57 - samples/sec: 2777.97 - lr: 0.000032 - momentum: 0.000000
2023-10-17 08:35:40,670 epoch 5 - iter 39/138 - loss 0.05399254 - time (sec): 2.28 - samples/sec: 2865.47 - lr: 0.000032 - momentum: 0.000000
2023-10-17 08:35:41,438 epoch 5 - iter 52/138 - loss 0.04714869 - time (sec): 3.05 - samples/sec: 2812.70 - lr: 0.000031 - momentum: 0.000000
2023-10-17 08:35:42,181 epoch 5 - iter 65/138 - loss 0.04556329 - time (sec): 3.79 - samples/sec: 2818.02 - lr: 0.000031 - momentum: 0.000000
2023-10-17 08:35:42,936 epoch 5 - iter 78/138 - loss 0.04860871 - time (sec): 4.54 - samples/sec: 2832.52 - lr: 0.000030 - momentum: 0.000000
2023-10-17 08:35:43,652 epoch 5 - iter 91/138 - loss 0.05073703 - time (sec): 5.26 - samples/sec: 2875.50 - lr: 0.000030 - momentum: 0.000000
2023-10-17 08:35:44,408 epoch 5 - iter 104/138 - loss 0.05067376 - time (sec): 6.02 - samples/sec: 2880.98 - lr: 0.000029 - momentum: 0.000000
2023-10-17 08:35:45,141 epoch 5 - iter 117/138 - loss 0.04980472 - time (sec): 6.75 - samples/sec: 2888.64 - lr: 0.000029 - momentum: 0.000000
2023-10-17 08:35:45,858 epoch 5 - iter 130/138 - loss 0.05156968 - time (sec): 7.47 - samples/sec: 2882.46 - lr: 0.000028 - momentum: 0.000000
2023-10-17 08:35:46,290 ----------------------------------------------------------------------------------------------------
2023-10-17 08:35:46,290 EPOCH 5 done: loss 0.0544 - lr: 0.000028
2023-10-17 08:35:46,941 DEV : loss 0.13915039598941803 - f1-score (micro avg)  0.8685
2023-10-17 08:35:46,946 saving best model
2023-10-17 08:35:47,394 ----------------------------------------------------------------------------------------------------
2023-10-17 08:35:48,156 epoch 6 - iter 13/138 - loss 0.05894751 - time (sec): 0.76 - samples/sec: 2914.36 - lr: 0.000027 - momentum: 0.000000
2023-10-17 08:35:48,874 epoch 6 - iter 26/138 - loss 0.04072450 - time (sec): 1.48 - samples/sec: 2788.36 - lr: 0.000027 - momentum: 0.000000
2023-10-17 08:35:49,620 epoch 6 - iter 39/138 - loss 0.03586809 - time (sec): 2.22 - samples/sec: 2841.81 - lr: 0.000026 - momentum: 0.000000
2023-10-17 08:35:50,366 epoch 6 - iter 52/138 - loss 0.03465352 - time (sec): 2.97 - samples/sec: 2859.07 - lr: 0.000026 - momentum: 0.000000
2023-10-17 08:35:51,104 epoch 6 - iter 65/138 - loss 0.03757808 - time (sec): 3.71 - samples/sec: 2857.92 - lr: 0.000025 - momentum: 0.000000
2023-10-17 08:35:51,890 epoch 6 - iter 78/138 - loss 0.04046940 - time (sec): 4.49 - samples/sec: 2856.53 - lr: 0.000025 - momentum: 0.000000
2023-10-17 08:35:52,701 epoch 6 - iter 91/138 - loss 0.04562090 - time (sec): 5.30 - samples/sec: 2894.15 - lr: 0.000024 - momentum: 0.000000
2023-10-17 08:35:53,438 epoch 6 - iter 104/138 - loss 0.04308195 - time (sec): 6.04 - samples/sec: 2893.39 - lr: 0.000024 - momentum: 0.000000
2023-10-17 08:35:54,134 epoch 6 - iter 117/138 - loss 0.04275599 - time (sec): 6.74 - samples/sec: 2889.34 - lr: 0.000023 - momentum: 0.000000
2023-10-17 08:35:54,891 epoch 6 - iter 130/138 - loss 0.04058690 - time (sec): 7.49 - samples/sec: 2882.52 - lr: 0.000023 - momentum: 0.000000
2023-10-17 08:35:55,346 ----------------------------------------------------------------------------------------------------
2023-10-17 08:35:55,347 EPOCH 6 done: loss 0.0403 - lr: 0.000023
2023-10-17 08:35:56,007 DEV : loss 0.17933738231658936 - f1-score (micro avg)  0.8634
2023-10-17 08:35:56,011 ----------------------------------------------------------------------------------------------------
2023-10-17 08:35:56,740 epoch 7 - iter 13/138 - loss 0.05558773 - time (sec): 0.73 - samples/sec: 3158.89 - lr: 0.000022 - momentum: 0.000000
2023-10-17 08:35:57,500 epoch 7 - iter 26/138 - loss 0.03701149 - time (sec): 1.49 - samples/sec: 3057.72 - lr: 0.000021 - momentum: 0.000000
2023-10-17 08:35:58,203 epoch 7 - iter 39/138 - loss 0.03583069 - time (sec): 2.19 - samples/sec: 3014.45 - lr: 0.000021 - momentum: 0.000000
2023-10-17 08:35:58,941 epoch 7 - iter 52/138 - loss 0.04594578 - time (sec): 2.93 - samples/sec: 2981.36 - lr: 0.000020 - momentum: 0.000000
2023-10-17 08:35:59,694 epoch 7 - iter 65/138 - loss 0.04030116 - time (sec): 3.68 - samples/sec: 2988.98 - lr: 0.000020 - momentum: 0.000000
2023-10-17 08:36:00,421 epoch 7 - iter 78/138 - loss 0.04106748 - time (sec): 4.41 - samples/sec: 2950.01 - lr: 0.000019 - momentum: 0.000000
2023-10-17 08:36:01,180 epoch 7 - iter 91/138 - loss 0.03909668 - time (sec): 5.17 - samples/sec: 2921.79 - lr: 0.000019 - momentum: 0.000000
2023-10-17 08:36:02,029 epoch 7 - iter 104/138 - loss 0.03806689 - time (sec): 6.02 - samples/sec: 2870.22 - lr: 0.000018 - momentum: 0.000000
2023-10-17 08:36:02,737 epoch 7 - iter 117/138 - loss 0.03591500 - time (sec): 6.72 - samples/sec: 2857.58 - lr: 0.000018 - momentum: 0.000000
2023-10-17 08:36:03,492 epoch 7 - iter 130/138 - loss 0.03447142 - time (sec): 7.48 - samples/sec: 2876.46 - lr: 0.000017 - momentum: 0.000000
2023-10-17 08:36:03,968 ----------------------------------------------------------------------------------------------------
2023-10-17 08:36:03,968 EPOCH 7 done: loss 0.0336 - lr: 0.000017
2023-10-17 08:36:04,614 DEV : loss 0.1858513355255127 - f1-score (micro avg)  0.8633
2023-10-17 08:36:04,619 ----------------------------------------------------------------------------------------------------
2023-10-17 08:36:05,347 epoch 8 - iter 13/138 - loss 0.01159785 - time (sec): 0.73 - samples/sec: 2930.99 - lr: 0.000016 - momentum: 0.000000
2023-10-17 08:36:06,107 epoch 8 - iter 26/138 - loss 0.00748875 - time (sec): 1.49 - samples/sec: 2819.78 - lr: 0.000016 - momentum: 0.000000
2023-10-17 08:36:06,828 epoch 8 - iter 39/138 - loss 0.00977630 - time (sec): 2.21 - samples/sec: 2846.32 - lr: 0.000015 - momentum: 0.000000
2023-10-17 08:36:07,619 epoch 8 - iter 52/138 - loss 0.01032406 - time (sec): 3.00 - samples/sec: 2884.06 - lr: 0.000015 - momentum: 0.000000
2023-10-17 08:36:08,355 epoch 8 - iter 65/138 - loss 0.01045180 - time (sec): 3.74 - samples/sec: 2905.72 - lr: 0.000014 - momentum: 0.000000
2023-10-17 08:36:09,149 epoch 8 - iter 78/138 - loss 0.01407818 - time (sec): 4.53 - samples/sec: 2886.56 - lr: 0.000014 - momentum: 0.000000
2023-10-17 08:36:09,892 epoch 8 - iter 91/138 - loss 0.01448040 - time (sec): 5.27 - samples/sec: 2862.11 - lr: 0.000013 - momentum: 0.000000
2023-10-17 08:36:10,630 epoch 8 - iter 104/138 - loss 0.01703694 - time (sec): 6.01 - samples/sec: 2872.26 - lr: 0.000013 - momentum: 0.000000
2023-10-17 08:36:11,389 epoch 8 - iter 117/138 - loss 0.02100446 - time (sec): 6.77 - samples/sec: 2862.47 - lr: 0.000012 - momentum: 0.000000
2023-10-17 08:36:12,097 epoch 8 - iter 130/138 - loss 0.02527052 - time (sec): 7.48 - samples/sec: 2866.84 - lr: 0.000012 - momentum: 0.000000
2023-10-17 08:36:12,579 ----------------------------------------------------------------------------------------------------
2023-10-17 08:36:12,579 EPOCH 8 done: loss 0.0251 - lr: 0.000012
2023-10-17 08:36:13,258 DEV : loss 0.18673621118068695 - f1-score (micro avg)  0.8619
2023-10-17 08:36:13,263 ----------------------------------------------------------------------------------------------------
2023-10-17 08:36:14,055 epoch 9 - iter 13/138 - loss 0.00286938 - time (sec): 0.79 - samples/sec: 2623.46 - lr: 0.000011 - momentum: 0.000000
2023-10-17 08:36:14,786 epoch 9 - iter 26/138 - loss 0.00516397 - time (sec): 1.52 - samples/sec: 2730.28 - lr: 0.000010 - momentum: 0.000000
2023-10-17 08:36:15,547 epoch 9 - iter 39/138 - loss 0.00459760 - time (sec): 2.28 - samples/sec: 2703.24 - lr: 0.000010 - momentum: 0.000000
2023-10-17 08:36:16,357 epoch 9 - iter 52/138 - loss 0.01948120 - time (sec): 3.09 - samples/sec: 2770.89 - lr: 0.000009 - momentum: 0.000000
2023-10-17 08:36:17,118 epoch 9 - iter 65/138 - loss 0.01938758 - time (sec): 3.85 - samples/sec: 2749.47 - lr: 0.000009 - momentum: 0.000000
2023-10-17 08:36:17,943 epoch 9 - iter 78/138 - loss 0.02191297 - time (sec): 4.68 - samples/sec: 2751.11 - lr: 0.000008 - momentum: 0.000000
2023-10-17 08:36:18,732 epoch 9 - iter 91/138 - loss 0.01910025 - time (sec): 5.47 - samples/sec: 2751.04 - lr: 0.000008 - momentum: 0.000000
2023-10-17 08:36:19,491 epoch 9 - iter 104/138 - loss 0.01905430 - time (sec): 6.23 - samples/sec: 2741.24 - lr: 0.000007 - momentum: 0.000000
2023-10-17 08:36:20,292 epoch 9 - iter 117/138 - loss 0.01906412 - time (sec): 7.03 - samples/sec: 2747.88 - lr: 0.000007 - momentum: 0.000000
2023-10-17 08:36:21,034 epoch 9 - iter 130/138 - loss 0.02012627 - time (sec): 7.77 - samples/sec: 2772.24 - lr: 0.000006 - momentum: 0.000000
2023-10-17 08:36:21,458 ----------------------------------------------------------------------------------------------------
2023-10-17 08:36:21,458 EPOCH 9 done: loss 0.0191 - lr: 0.000006
2023-10-17 08:36:22,181 DEV : loss 0.20274551212787628 - f1-score (micro avg)  0.8558
2023-10-17 08:36:22,186 ----------------------------------------------------------------------------------------------------
2023-10-17 08:36:22,923 epoch 10 - iter 13/138 - loss 0.00037874 - time (sec): 0.74 - samples/sec: 2816.38 - lr: 0.000005 - momentum: 0.000000
2023-10-17 08:36:23,701 epoch 10 - iter 26/138 - loss 0.00164556 - time (sec): 1.51 - samples/sec: 2860.71 - lr: 0.000005 - momentum: 0.000000
2023-10-17 08:36:24,464 epoch 10 - iter 39/138 - loss 0.00401456 - time (sec): 2.28 - samples/sec: 2919.05 - lr: 0.000004 - momentum: 0.000000
2023-10-17 08:36:25,258 epoch 10 - iter 52/138 - loss 0.01412709 - time (sec): 3.07 - samples/sec: 2880.68 - lr: 0.000004 - momentum: 0.000000
2023-10-17 08:36:25,995 epoch 10 - iter 65/138 - loss 0.01577883 - time (sec): 3.81 - samples/sec: 2837.15 - lr: 0.000003 - momentum: 0.000000
2023-10-17 08:36:26,765 epoch 10 - iter 78/138 - loss 0.01358062 - time (sec): 4.58 - samples/sec: 2842.94 - lr: 0.000003 - momentum: 0.000000
2023-10-17 08:36:27,536 epoch 10 - iter 91/138 - loss 0.01388950 - time (sec): 5.35 - samples/sec: 2848.01 - lr: 0.000002 - momentum: 0.000000
2023-10-17 08:36:28,287 epoch 10 - iter 104/138 - loss 0.01366988 - time (sec): 6.10 - samples/sec: 2867.03 - lr: 0.000002 - momentum: 0.000000
2023-10-17 08:36:29,019 epoch 10 - iter 117/138 - loss 0.01421039 - time (sec): 6.83 - samples/sec: 2841.28 - lr: 0.000001 - momentum: 0.000000
2023-10-17 08:36:29,736 epoch 10 - iter 130/138 - loss 0.01533784 - time (sec): 7.55 - samples/sec: 2839.22 - lr: 0.000000 - momentum: 0.000000
2023-10-17 08:36:30,198 ----------------------------------------------------------------------------------------------------
2023-10-17 08:36:30,198 EPOCH 10 done: loss 0.0146 - lr: 0.000000
2023-10-17 08:36:30,901 DEV : loss 0.20630405843257904 - f1-score (micro avg)  0.8599
2023-10-17 08:36:31,252 ----------------------------------------------------------------------------------------------------
2023-10-17 08:36:31,253 Loading model from best epoch ...
2023-10-17 08:36:32,566 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-17 08:36:33,363 
Results:
- F-score (micro) 0.886
- F-score (macro) 0.6312
- Accuracy 0.8067

By class:
              precision    recall  f1-score   support

       scope     0.8851    0.8750    0.8800       176
        pers     0.9677    0.9375    0.9524       128
        work     0.7975    0.8514    0.8235        74
      object     0.0000    0.0000    0.0000         2
         loc     0.5000    0.5000    0.5000         2

   micro avg     0.8871    0.8848    0.8860       382
   macro avg     0.6301    0.6328    0.6312       382
weighted avg     0.8891    0.8848    0.8867       382

2023-10-17 08:36:33,363 ----------------------------------------------------------------------------------------------------