File size: 24,037 Bytes
545d882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
2023-10-17 08:25:45,131 ----------------------------------------------------------------------------------------------------
2023-10-17 08:25:45,132 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): ElectraModel(
      (embeddings): ElectraEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): ElectraEncoder(
        (layer): ModuleList(
          (0-11): 12 x ElectraLayer(
            (attention): ElectraAttention(
              (self): ElectraSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): ElectraSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): ElectraIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): ElectraOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-17 08:25:45,132 ----------------------------------------------------------------------------------------------------
2023-10-17 08:25:45,132 MultiCorpus: 1100 train + 206 dev + 240 test sentences
 - NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
2023-10-17 08:25:45,132 ----------------------------------------------------------------------------------------------------
2023-10-17 08:25:45,132 Train:  1100 sentences
2023-10-17 08:25:45,133         (train_with_dev=False, train_with_test=False)
2023-10-17 08:25:45,133 ----------------------------------------------------------------------------------------------------
2023-10-17 08:25:45,133 Training Params:
2023-10-17 08:25:45,133  - learning_rate: "5e-05" 
2023-10-17 08:25:45,133  - mini_batch_size: "8"
2023-10-17 08:25:45,133  - max_epochs: "10"
2023-10-17 08:25:45,133  - shuffle: "True"
2023-10-17 08:25:45,133 ----------------------------------------------------------------------------------------------------
2023-10-17 08:25:45,133 Plugins:
2023-10-17 08:25:45,133  - TensorboardLogger
2023-10-17 08:25:45,133  - LinearScheduler | warmup_fraction: '0.1'
2023-10-17 08:25:45,133 ----------------------------------------------------------------------------------------------------
2023-10-17 08:25:45,133 Final evaluation on model from best epoch (best-model.pt)
2023-10-17 08:25:45,133  - metric: "('micro avg', 'f1-score')"
2023-10-17 08:25:45,133 ----------------------------------------------------------------------------------------------------
2023-10-17 08:25:45,133 Computation:
2023-10-17 08:25:45,133  - compute on device: cuda:0
2023-10-17 08:25:45,133  - embedding storage: none
2023-10-17 08:25:45,133 ----------------------------------------------------------------------------------------------------
2023-10-17 08:25:45,133 Model training base path: "hmbench-ajmc/de-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1"
2023-10-17 08:25:45,133 ----------------------------------------------------------------------------------------------------
2023-10-17 08:25:45,133 ----------------------------------------------------------------------------------------------------
2023-10-17 08:25:45,133 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-17 08:25:45,848 epoch 1 - iter 13/138 - loss 3.43157067 - time (sec): 0.71 - samples/sec: 2929.63 - lr: 0.000004 - momentum: 0.000000
2023-10-17 08:25:46,565 epoch 1 - iter 26/138 - loss 2.94341200 - time (sec): 1.43 - samples/sec: 2874.16 - lr: 0.000009 - momentum: 0.000000
2023-10-17 08:25:47,299 epoch 1 - iter 39/138 - loss 2.44187050 - time (sec): 2.17 - samples/sec: 2856.13 - lr: 0.000014 - momentum: 0.000000
2023-10-17 08:25:48,033 epoch 1 - iter 52/138 - loss 1.99375963 - time (sec): 2.90 - samples/sec: 2884.28 - lr: 0.000018 - momentum: 0.000000
2023-10-17 08:25:48,817 epoch 1 - iter 65/138 - loss 1.67766635 - time (sec): 3.68 - samples/sec: 2904.62 - lr: 0.000023 - momentum: 0.000000
2023-10-17 08:25:49,568 epoch 1 - iter 78/138 - loss 1.47320680 - time (sec): 4.43 - samples/sec: 2945.81 - lr: 0.000028 - momentum: 0.000000
2023-10-17 08:25:50,281 epoch 1 - iter 91/138 - loss 1.34446452 - time (sec): 5.15 - samples/sec: 2939.89 - lr: 0.000033 - momentum: 0.000000
2023-10-17 08:25:51,011 epoch 1 - iter 104/138 - loss 1.21983278 - time (sec): 5.88 - samples/sec: 2920.15 - lr: 0.000037 - momentum: 0.000000
2023-10-17 08:25:51,739 epoch 1 - iter 117/138 - loss 1.12117619 - time (sec): 6.60 - samples/sec: 2922.93 - lr: 0.000042 - momentum: 0.000000
2023-10-17 08:25:52,492 epoch 1 - iter 130/138 - loss 1.04463454 - time (sec): 7.36 - samples/sec: 2913.32 - lr: 0.000047 - momentum: 0.000000
2023-10-17 08:25:52,958 ----------------------------------------------------------------------------------------------------
2023-10-17 08:25:52,959 EPOCH 1 done: loss 1.0032 - lr: 0.000047
2023-10-17 08:25:53,496 DEV : loss 0.24205686151981354 - f1-score (micro avg)  0.6482
2023-10-17 08:25:53,501 saving best model
2023-10-17 08:25:53,850 ----------------------------------------------------------------------------------------------------
2023-10-17 08:25:54,620 epoch 2 - iter 13/138 - loss 0.27043098 - time (sec): 0.77 - samples/sec: 3000.22 - lr: 0.000050 - momentum: 0.000000
2023-10-17 08:25:55,375 epoch 2 - iter 26/138 - loss 0.24273143 - time (sec): 1.52 - samples/sec: 2867.69 - lr: 0.000049 - momentum: 0.000000
2023-10-17 08:25:56,141 epoch 2 - iter 39/138 - loss 0.25085266 - time (sec): 2.29 - samples/sec: 2912.01 - lr: 0.000048 - momentum: 0.000000
2023-10-17 08:25:56,839 epoch 2 - iter 52/138 - loss 0.24140883 - time (sec): 2.99 - samples/sec: 2964.32 - lr: 0.000048 - momentum: 0.000000
2023-10-17 08:25:57,552 epoch 2 - iter 65/138 - loss 0.22835302 - time (sec): 3.70 - samples/sec: 2914.71 - lr: 0.000047 - momentum: 0.000000
2023-10-17 08:25:58,287 epoch 2 - iter 78/138 - loss 0.22322428 - time (sec): 4.43 - samples/sec: 2942.73 - lr: 0.000047 - momentum: 0.000000
2023-10-17 08:25:59,003 epoch 2 - iter 91/138 - loss 0.21610097 - time (sec): 5.15 - samples/sec: 2928.90 - lr: 0.000046 - momentum: 0.000000
2023-10-17 08:25:59,721 epoch 2 - iter 104/138 - loss 0.20830588 - time (sec): 5.87 - samples/sec: 2900.25 - lr: 0.000046 - momentum: 0.000000
2023-10-17 08:26:00,475 epoch 2 - iter 117/138 - loss 0.20383405 - time (sec): 6.62 - samples/sec: 2896.09 - lr: 0.000045 - momentum: 0.000000
2023-10-17 08:26:01,219 epoch 2 - iter 130/138 - loss 0.19579670 - time (sec): 7.37 - samples/sec: 2918.89 - lr: 0.000045 - momentum: 0.000000
2023-10-17 08:26:01,632 ----------------------------------------------------------------------------------------------------
2023-10-17 08:26:01,632 EPOCH 2 done: loss 0.1884 - lr: 0.000045
2023-10-17 08:26:02,266 DEV : loss 0.1432858556509018 - f1-score (micro avg)  0.81
2023-10-17 08:26:02,270 saving best model
2023-10-17 08:26:02,711 ----------------------------------------------------------------------------------------------------
2023-10-17 08:26:03,446 epoch 3 - iter 13/138 - loss 0.09662708 - time (sec): 0.73 - samples/sec: 2790.06 - lr: 0.000044 - momentum: 0.000000
2023-10-17 08:26:04,204 epoch 3 - iter 26/138 - loss 0.09741620 - time (sec): 1.49 - samples/sec: 2984.74 - lr: 0.000043 - momentum: 0.000000
2023-10-17 08:26:04,938 epoch 3 - iter 39/138 - loss 0.08527103 - time (sec): 2.22 - samples/sec: 2877.89 - lr: 0.000043 - momentum: 0.000000
2023-10-17 08:26:05,629 epoch 3 - iter 52/138 - loss 0.08554042 - time (sec): 2.91 - samples/sec: 2862.09 - lr: 0.000042 - momentum: 0.000000
2023-10-17 08:26:06,459 epoch 3 - iter 65/138 - loss 0.08704104 - time (sec): 3.74 - samples/sec: 2854.23 - lr: 0.000042 - momentum: 0.000000
2023-10-17 08:26:07,158 epoch 3 - iter 78/138 - loss 0.08765933 - time (sec): 4.44 - samples/sec: 2849.52 - lr: 0.000041 - momentum: 0.000000
2023-10-17 08:26:07,904 epoch 3 - iter 91/138 - loss 0.08846124 - time (sec): 5.19 - samples/sec: 2895.29 - lr: 0.000041 - momentum: 0.000000
2023-10-17 08:26:08,635 epoch 3 - iter 104/138 - loss 0.09460890 - time (sec): 5.92 - samples/sec: 2910.53 - lr: 0.000040 - momentum: 0.000000
2023-10-17 08:26:09,355 epoch 3 - iter 117/138 - loss 0.09452451 - time (sec): 6.64 - samples/sec: 2913.27 - lr: 0.000040 - momentum: 0.000000
2023-10-17 08:26:10,070 epoch 3 - iter 130/138 - loss 0.10364161 - time (sec): 7.35 - samples/sec: 2935.57 - lr: 0.000039 - momentum: 0.000000
2023-10-17 08:26:10,523 ----------------------------------------------------------------------------------------------------
2023-10-17 08:26:10,524 EPOCH 3 done: loss 0.1024 - lr: 0.000039
2023-10-17 08:26:11,150 DEV : loss 0.12657766044139862 - f1-score (micro avg)  0.8361
2023-10-17 08:26:11,155 saving best model
2023-10-17 08:26:11,582 ----------------------------------------------------------------------------------------------------
2023-10-17 08:26:12,355 epoch 4 - iter 13/138 - loss 0.06164321 - time (sec): 0.77 - samples/sec: 3073.48 - lr: 0.000038 - momentum: 0.000000
2023-10-17 08:26:13,056 epoch 4 - iter 26/138 - loss 0.06900307 - time (sec): 1.47 - samples/sec: 2954.64 - lr: 0.000038 - momentum: 0.000000
2023-10-17 08:26:13,791 epoch 4 - iter 39/138 - loss 0.06737054 - time (sec): 2.21 - samples/sec: 2937.82 - lr: 0.000037 - momentum: 0.000000
2023-10-17 08:26:14,545 epoch 4 - iter 52/138 - loss 0.07217805 - time (sec): 2.96 - samples/sec: 2878.16 - lr: 0.000037 - momentum: 0.000000
2023-10-17 08:26:15,299 epoch 4 - iter 65/138 - loss 0.08353830 - time (sec): 3.72 - samples/sec: 2937.82 - lr: 0.000036 - momentum: 0.000000
2023-10-17 08:26:16,032 epoch 4 - iter 78/138 - loss 0.08015663 - time (sec): 4.45 - samples/sec: 2898.27 - lr: 0.000036 - momentum: 0.000000
2023-10-17 08:26:16,795 epoch 4 - iter 91/138 - loss 0.08026446 - time (sec): 5.21 - samples/sec: 2882.55 - lr: 0.000035 - momentum: 0.000000
2023-10-17 08:26:17,553 epoch 4 - iter 104/138 - loss 0.07646328 - time (sec): 5.97 - samples/sec: 2892.23 - lr: 0.000035 - momentum: 0.000000
2023-10-17 08:26:18,316 epoch 4 - iter 117/138 - loss 0.07885204 - time (sec): 6.73 - samples/sec: 2889.55 - lr: 0.000034 - momentum: 0.000000
2023-10-17 08:26:19,036 epoch 4 - iter 130/138 - loss 0.07560251 - time (sec): 7.45 - samples/sec: 2876.21 - lr: 0.000034 - momentum: 0.000000
2023-10-17 08:26:19,522 ----------------------------------------------------------------------------------------------------
2023-10-17 08:26:19,522 EPOCH 4 done: loss 0.0749 - lr: 0.000034
2023-10-17 08:26:20,300 DEV : loss 0.1538553535938263 - f1-score (micro avg)  0.8603
2023-10-17 08:26:20,304 saving best model
2023-10-17 08:26:20,751 ----------------------------------------------------------------------------------------------------
2023-10-17 08:26:21,519 epoch 5 - iter 13/138 - loss 0.08129829 - time (sec): 0.76 - samples/sec: 2871.69 - lr: 0.000033 - momentum: 0.000000
2023-10-17 08:26:22,261 epoch 5 - iter 26/138 - loss 0.07047005 - time (sec): 1.51 - samples/sec: 2959.86 - lr: 0.000032 - momentum: 0.000000
2023-10-17 08:26:23,009 epoch 5 - iter 39/138 - loss 0.05637991 - time (sec): 2.25 - samples/sec: 2912.22 - lr: 0.000032 - momentum: 0.000000
2023-10-17 08:26:23,713 epoch 5 - iter 52/138 - loss 0.06461053 - time (sec): 2.96 - samples/sec: 2932.41 - lr: 0.000031 - momentum: 0.000000
2023-10-17 08:26:24,440 epoch 5 - iter 65/138 - loss 0.05885473 - time (sec): 3.68 - samples/sec: 2890.02 - lr: 0.000031 - momentum: 0.000000
2023-10-17 08:26:25,168 epoch 5 - iter 78/138 - loss 0.05439754 - time (sec): 4.41 - samples/sec: 2858.89 - lr: 0.000030 - momentum: 0.000000
2023-10-17 08:26:25,890 epoch 5 - iter 91/138 - loss 0.05002054 - time (sec): 5.13 - samples/sec: 2894.96 - lr: 0.000030 - momentum: 0.000000
2023-10-17 08:26:26,677 epoch 5 - iter 104/138 - loss 0.04951814 - time (sec): 5.92 - samples/sec: 2896.48 - lr: 0.000029 - momentum: 0.000000
2023-10-17 08:26:27,422 epoch 5 - iter 117/138 - loss 0.05822267 - time (sec): 6.67 - samples/sec: 2926.58 - lr: 0.000029 - momentum: 0.000000
2023-10-17 08:26:28,160 epoch 5 - iter 130/138 - loss 0.05859372 - time (sec): 7.40 - samples/sec: 2912.45 - lr: 0.000028 - momentum: 0.000000
2023-10-17 08:26:28,641 ----------------------------------------------------------------------------------------------------
2023-10-17 08:26:28,641 EPOCH 5 done: loss 0.0567 - lr: 0.000028
2023-10-17 08:26:29,293 DEV : loss 0.1780824512243271 - f1-score (micro avg)  0.8585
2023-10-17 08:26:29,298 ----------------------------------------------------------------------------------------------------
2023-10-17 08:26:30,026 epoch 6 - iter 13/138 - loss 0.01633802 - time (sec): 0.73 - samples/sec: 2852.60 - lr: 0.000027 - momentum: 0.000000
2023-10-17 08:26:30,810 epoch 6 - iter 26/138 - loss 0.04230440 - time (sec): 1.51 - samples/sec: 3087.62 - lr: 0.000027 - momentum: 0.000000
2023-10-17 08:26:31,517 epoch 6 - iter 39/138 - loss 0.03934797 - time (sec): 2.22 - samples/sec: 3064.13 - lr: 0.000026 - momentum: 0.000000
2023-10-17 08:26:32,220 epoch 6 - iter 52/138 - loss 0.03589065 - time (sec): 2.92 - samples/sec: 3006.27 - lr: 0.000026 - momentum: 0.000000
2023-10-17 08:26:32,987 epoch 6 - iter 65/138 - loss 0.03127002 - time (sec): 3.69 - samples/sec: 2954.78 - lr: 0.000025 - momentum: 0.000000
2023-10-17 08:26:33,761 epoch 6 - iter 78/138 - loss 0.03359051 - time (sec): 4.46 - samples/sec: 2937.72 - lr: 0.000025 - momentum: 0.000000
2023-10-17 08:26:34,495 epoch 6 - iter 91/138 - loss 0.03844091 - time (sec): 5.20 - samples/sec: 2929.76 - lr: 0.000024 - momentum: 0.000000
2023-10-17 08:26:35,251 epoch 6 - iter 104/138 - loss 0.04316186 - time (sec): 5.95 - samples/sec: 2900.75 - lr: 0.000024 - momentum: 0.000000
2023-10-17 08:26:35,972 epoch 6 - iter 117/138 - loss 0.04013628 - time (sec): 6.67 - samples/sec: 2892.73 - lr: 0.000023 - momentum: 0.000000
2023-10-17 08:26:36,732 epoch 6 - iter 130/138 - loss 0.03952624 - time (sec): 7.43 - samples/sec: 2887.53 - lr: 0.000023 - momentum: 0.000000
2023-10-17 08:26:37,182 ----------------------------------------------------------------------------------------------------
2023-10-17 08:26:37,182 EPOCH 6 done: loss 0.0465 - lr: 0.000023
2023-10-17 08:26:37,817 DEV : loss 0.15540580451488495 - f1-score (micro avg)  0.878
2023-10-17 08:26:37,821 saving best model
2023-10-17 08:26:38,247 ----------------------------------------------------------------------------------------------------
2023-10-17 08:26:38,961 epoch 7 - iter 13/138 - loss 0.01397906 - time (sec): 0.71 - samples/sec: 2701.78 - lr: 0.000022 - momentum: 0.000000
2023-10-17 08:26:39,684 epoch 7 - iter 26/138 - loss 0.02628629 - time (sec): 1.43 - samples/sec: 2811.79 - lr: 0.000021 - momentum: 0.000000
2023-10-17 08:26:40,426 epoch 7 - iter 39/138 - loss 0.04371837 - time (sec): 2.18 - samples/sec: 2824.49 - lr: 0.000021 - momentum: 0.000000
2023-10-17 08:26:41,229 epoch 7 - iter 52/138 - loss 0.03915947 - time (sec): 2.98 - samples/sec: 2767.46 - lr: 0.000020 - momentum: 0.000000
2023-10-17 08:26:41,999 epoch 7 - iter 65/138 - loss 0.04067551 - time (sec): 3.75 - samples/sec: 2832.11 - lr: 0.000020 - momentum: 0.000000
2023-10-17 08:26:42,768 epoch 7 - iter 78/138 - loss 0.03483673 - time (sec): 4.52 - samples/sec: 2803.84 - lr: 0.000019 - momentum: 0.000000
2023-10-17 08:26:43,487 epoch 7 - iter 91/138 - loss 0.03369841 - time (sec): 5.24 - samples/sec: 2815.66 - lr: 0.000019 - momentum: 0.000000
2023-10-17 08:26:44,217 epoch 7 - iter 104/138 - loss 0.03193150 - time (sec): 5.97 - samples/sec: 2838.02 - lr: 0.000018 - momentum: 0.000000
2023-10-17 08:26:45,044 epoch 7 - iter 117/138 - loss 0.03238749 - time (sec): 6.79 - samples/sec: 2837.96 - lr: 0.000018 - momentum: 0.000000
2023-10-17 08:26:45,778 epoch 7 - iter 130/138 - loss 0.03219471 - time (sec): 7.53 - samples/sec: 2849.44 - lr: 0.000017 - momentum: 0.000000
2023-10-17 08:26:46,304 ----------------------------------------------------------------------------------------------------
2023-10-17 08:26:46,305 EPOCH 7 done: loss 0.0327 - lr: 0.000017
2023-10-17 08:26:46,939 DEV : loss 0.1837640106678009 - f1-score (micro avg)  0.8723
2023-10-17 08:26:46,943 ----------------------------------------------------------------------------------------------------
2023-10-17 08:26:47,694 epoch 8 - iter 13/138 - loss 0.03074508 - time (sec): 0.75 - samples/sec: 2800.68 - lr: 0.000016 - momentum: 0.000000
2023-10-17 08:26:48,456 epoch 8 - iter 26/138 - loss 0.03711762 - time (sec): 1.51 - samples/sec: 2885.28 - lr: 0.000016 - momentum: 0.000000
2023-10-17 08:26:49,183 epoch 8 - iter 39/138 - loss 0.03737419 - time (sec): 2.24 - samples/sec: 2923.03 - lr: 0.000015 - momentum: 0.000000
2023-10-17 08:26:49,928 epoch 8 - iter 52/138 - loss 0.03129664 - time (sec): 2.98 - samples/sec: 2923.94 - lr: 0.000015 - momentum: 0.000000
2023-10-17 08:26:50,719 epoch 8 - iter 65/138 - loss 0.02973725 - time (sec): 3.78 - samples/sec: 2904.04 - lr: 0.000014 - momentum: 0.000000
2023-10-17 08:26:51,464 epoch 8 - iter 78/138 - loss 0.02665196 - time (sec): 4.52 - samples/sec: 2865.84 - lr: 0.000014 - momentum: 0.000000
2023-10-17 08:26:52,233 epoch 8 - iter 91/138 - loss 0.02400992 - time (sec): 5.29 - samples/sec: 2882.20 - lr: 0.000013 - momentum: 0.000000
2023-10-17 08:26:52,997 epoch 8 - iter 104/138 - loss 0.02313313 - time (sec): 6.05 - samples/sec: 2852.01 - lr: 0.000013 - momentum: 0.000000
2023-10-17 08:26:53,736 epoch 8 - iter 117/138 - loss 0.02525509 - time (sec): 6.79 - samples/sec: 2864.69 - lr: 0.000012 - momentum: 0.000000
2023-10-17 08:26:54,476 epoch 8 - iter 130/138 - loss 0.02647068 - time (sec): 7.53 - samples/sec: 2872.09 - lr: 0.000012 - momentum: 0.000000
2023-10-17 08:26:54,891 ----------------------------------------------------------------------------------------------------
2023-10-17 08:26:54,891 EPOCH 8 done: loss 0.0254 - lr: 0.000012
2023-10-17 08:26:55,522 DEV : loss 0.1877746433019638 - f1-score (micro avg)  0.8886
2023-10-17 08:26:55,527 saving best model
2023-10-17 08:26:55,982 ----------------------------------------------------------------------------------------------------
2023-10-17 08:26:56,735 epoch 9 - iter 13/138 - loss 0.03739812 - time (sec): 0.75 - samples/sec: 2778.28 - lr: 0.000011 - momentum: 0.000000
2023-10-17 08:26:57,511 epoch 9 - iter 26/138 - loss 0.03150704 - time (sec): 1.52 - samples/sec: 2646.10 - lr: 0.000010 - momentum: 0.000000
2023-10-17 08:26:58,254 epoch 9 - iter 39/138 - loss 0.02277717 - time (sec): 2.27 - samples/sec: 2725.40 - lr: 0.000010 - momentum: 0.000000
2023-10-17 08:26:59,043 epoch 9 - iter 52/138 - loss 0.02272279 - time (sec): 3.06 - samples/sec: 2739.97 - lr: 0.000009 - momentum: 0.000000
2023-10-17 08:26:59,809 epoch 9 - iter 65/138 - loss 0.02141050 - time (sec): 3.82 - samples/sec: 2755.69 - lr: 0.000009 - momentum: 0.000000
2023-10-17 08:27:00,593 epoch 9 - iter 78/138 - loss 0.01807415 - time (sec): 4.61 - samples/sec: 2814.59 - lr: 0.000008 - momentum: 0.000000
2023-10-17 08:27:01,320 epoch 9 - iter 91/138 - loss 0.01752412 - time (sec): 5.33 - samples/sec: 2842.18 - lr: 0.000008 - momentum: 0.000000
2023-10-17 08:27:02,012 epoch 9 - iter 104/138 - loss 0.01795085 - time (sec): 6.02 - samples/sec: 2815.64 - lr: 0.000007 - momentum: 0.000000
2023-10-17 08:27:02,736 epoch 9 - iter 117/138 - loss 0.01734781 - time (sec): 6.75 - samples/sec: 2805.11 - lr: 0.000007 - momentum: 0.000000
2023-10-17 08:27:03,488 epoch 9 - iter 130/138 - loss 0.01818842 - time (sec): 7.50 - samples/sec: 2821.79 - lr: 0.000006 - momentum: 0.000000
2023-10-17 08:27:03,951 ----------------------------------------------------------------------------------------------------
2023-10-17 08:27:03,951 EPOCH 9 done: loss 0.0195 - lr: 0.000006
2023-10-17 08:27:04,597 DEV : loss 0.1937594711780548 - f1-score (micro avg)  0.891
2023-10-17 08:27:04,602 saving best model
2023-10-17 08:27:05,034 ----------------------------------------------------------------------------------------------------
2023-10-17 08:27:05,765 epoch 10 - iter 13/138 - loss 0.01784379 - time (sec): 0.73 - samples/sec: 2849.89 - lr: 0.000005 - momentum: 0.000000
2023-10-17 08:27:06,512 epoch 10 - iter 26/138 - loss 0.00971714 - time (sec): 1.48 - samples/sec: 2742.12 - lr: 0.000005 - momentum: 0.000000
2023-10-17 08:27:07,254 epoch 10 - iter 39/138 - loss 0.01334067 - time (sec): 2.22 - samples/sec: 2773.75 - lr: 0.000004 - momentum: 0.000000
2023-10-17 08:27:08,064 epoch 10 - iter 52/138 - loss 0.01038007 - time (sec): 3.03 - samples/sec: 2718.39 - lr: 0.000004 - momentum: 0.000000
2023-10-17 08:27:08,829 epoch 10 - iter 65/138 - loss 0.00834679 - time (sec): 3.79 - samples/sec: 2764.06 - lr: 0.000003 - momentum: 0.000000
2023-10-17 08:27:09,585 epoch 10 - iter 78/138 - loss 0.01155802 - time (sec): 4.55 - samples/sec: 2772.08 - lr: 0.000003 - momentum: 0.000000
2023-10-17 08:27:10,365 epoch 10 - iter 91/138 - loss 0.01175069 - time (sec): 5.33 - samples/sec: 2802.48 - lr: 0.000002 - momentum: 0.000000
2023-10-17 08:27:11,119 epoch 10 - iter 104/138 - loss 0.01383309 - time (sec): 6.08 - samples/sec: 2813.68 - lr: 0.000002 - momentum: 0.000000
2023-10-17 08:27:11,847 epoch 10 - iter 117/138 - loss 0.01436897 - time (sec): 6.81 - samples/sec: 2843.50 - lr: 0.000001 - momentum: 0.000000
2023-10-17 08:27:12,582 epoch 10 - iter 130/138 - loss 0.01313075 - time (sec): 7.55 - samples/sec: 2871.93 - lr: 0.000000 - momentum: 0.000000
2023-10-17 08:27:13,015 ----------------------------------------------------------------------------------------------------
2023-10-17 08:27:13,016 EPOCH 10 done: loss 0.0135 - lr: 0.000000
2023-10-17 08:27:13,658 DEV : loss 0.19636619091033936 - f1-score (micro avg)  0.8948
2023-10-17 08:27:13,663 saving best model
2023-10-17 08:27:14,448 ----------------------------------------------------------------------------------------------------
2023-10-17 08:27:14,449 Loading model from best epoch ...
2023-10-17 08:27:15,783 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-17 08:27:16,610 
Results:
- F-score (micro) 0.9146
- F-score (macro) 0.8801
- Accuracy 0.8509

By class:
              precision    recall  f1-score   support

       scope     0.8920    0.8920    0.8920       176
        pers     0.9690    0.9766    0.9728       128
        work     0.8873    0.8514    0.8690        74
      object     1.0000    1.0000    1.0000         2
         loc     1.0000    0.5000    0.6667         2

   micro avg     0.9182    0.9110    0.9146       382
   macro avg     0.9497    0.8440    0.8801       382
weighted avg     0.9180    0.9110    0.9140       382

2023-10-17 08:27:16,611 ----------------------------------------------------------------------------------------------------