--- library_name: transformers language: - ba license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - stdbug/common-voice-17-ba metrics: - wer model-index: - name: Whisper Small Bashkir results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 17.0 (ba) type: stdbug/common-voice-17-ba args: 'config: ba, split: test' metrics: - type: wer value: 24.55759888965996 name: Wer --- # Whisper Small Bashkir This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 17.0 (ba) dataset. It achieves the following results on the evaluation set: - Loss: 0.1616 - Wer: 24.5576 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 19576 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:-------:| | 0.0861 | 0.9999 | 19576 | 0.1616 | 24.5576 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0