File size: 3,281 Bytes
60d8368 b65012e 60d8368 b65012e 60d8368 b65012e 590066c b65012e 60d8368 b65012e 60d8368 b65012e 60d8368 b65012e 60d8368 b65012e 60d8368 aab2567 60d8368 847e1c6 60d8368 9f09426 590066c b65012e 590066c b65012e 590066c b65012e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
base_model:
- tiiuae/falcon-11B
library_name: transformers
tags:
- mergekit
- merge
- lazymergekit
license: apache-2.0
language:
- de
---
# sliced
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the passthrough merge method.
### Models Merged
The following models were included in the merge:
* [tiiuae/falcon-11B](https://huggingface.co/tiiuae/falcon-11B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: tiiuae/falcon-11B
layer_range: [0, 25]
- sources:
- model: tiiuae/falcon-11B
layer_range: [56, 59]
merge_method: passthrough
dtype: bfloat16
```
[PruneMe](https://github.com/arcee-ai/PruneMe) has been utilized using the wikimedia/wikipedia Dutch (nl) subset by investigating layer similarity with 2000 samples. The layer ranges for pruning were determined based on this analysis to maintain performance while reducing model size.
![Layer Similarity Plot](https://cdn-uploads.huggingface.co/production/uploads/660c0a02cf274b3ab77dd6b7/PF3SzEhQRJPXyYi2KqS1A.png)
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
model = "ssmits/Falcon2-5.5B-Dutch"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
)
sequences = pipeline(
"Can you explain the concepts of Quantum Computing?",
max_length=200,
do_sample=True,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
```
💥 **Falcon LLMs require PyTorch 2.0 for use with `transformers`!**
For fast inference with Falcon, check-out [Text Generation Inference](https://github.com/huggingface/text-generation-inference)! Read more in this [blogpost]((https://huggingface.co/blog/falcon).
## Direct Use
Research on large language models; as a foundation for further specialization and finetuning for specific usecases (e.g., summarization, text generation, chatbot, etc.)
## Out-of-Scope Use
Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful.
## Bias, Risks, and Limitations
Falcon2-5.5B is trained mostly on English, but also German, Spanish, French, Italian, Portuguese, Polish, Dutch, Romanian, Czech, Swedish. It will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online.
## Recommendations
We recommend users of Falcon2-5.5B to consider finetuning it for the specific set of tasks of interest, and for guardrails and appropriate precautions to be taken for any production use.
[PruneMe](https://github.com/arcee-ai/PruneMe) has been utilized using the AgentWaller/dutch-oasst1 dataset by investigating layer similarity with 4000 samples. The layer ranges for pruning were determined based on this analysis to maintain performance while reducing model size.
|