RL week 1 PPO
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 217.15 +/- 49.99
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7499ce7d40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7499ce7dd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7499ce7e60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7499ce7ef0>", "_build": "<function ActorCriticPolicy._build at 0x7f7499ce7f80>", "forward": "<function ActorCriticPolicy.forward at 0x7f7499cef050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7499cef0e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7499cef170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7499cef200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7499cef290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7499cef320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7499d46150>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652108837.3781831, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAG2rkT7YxJQ/5NIOPubtNr4kPoQ+JmiFvgAAAAAAAAAAJr3MPY/ucrqFZFe6wHkJtq+lkTou+3c5AACAPwAAgD9ztwO+uHagOkvwD7nsNMU17X6DvIf1NDgAAIA/AACAP3PV4r3scf+5m2hHO3JfrzflqHe7APwTugAAgD8AAIA/ZhaMO49WR7pQwZe75G4et/LDXTutoa46AACAPwAAgD/NvEo7KUhiulJCJbszZ1a2mOWKO63hPToAAIA/AACAP+AsGz72RRK8SnMcPMdegrqxfHi9zgNYuwAAgD8AAIA/AEhoPfYMS7oz/+C7o8zjN3CNvzqW2yy3AACAPwAAgD+T6rs+47t3P73n3ryabZ6+AYepPfJXa70AAAAAAAAAAFpA/j3X4044YkWAu3A9r7fU5VY7pbckOQAAgD8AAIA/ADDbukjbirrtpFW7zZw8tsdcfzrWZ3g6AACAPwAAgD9NLCS99vR9uuKOXrsi7zY1u8HJOULZpbQAAIA/AACAPzNBkbxkZ5M+0wQhPIoXoL6NWFy8PmoZvAAAAAAAAAAAZnamOo+qd7q2ITg65GNXtge4CrvGoVS5AACAPwAAgD9mx5O9SEuZumqBHDm1lgM0Aii4utaeNLgAAIA/AACAP8DMuL3D2Tq60Bx4u4CC0Da68Vo5/ao+tgAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7Sk5J/aPVECUhpRSlIwBbJRN6AOMAXSUR0Cj+C1sk6cRdX2UKGgGaAloD0MIBWnGouleWkCUhpRSlGgVTegDaBZHQKP6jVAiV0N1fZQoaAZoCWgPQwjbheY6jZViQJSGlFKUaBVN6ANoFkdAo/sc1l5GBnV9lChoBmgJaA9DCLzJb9HJc2FAlIaUUpRoFU3oA2gWR0Cj/mDLB9CvdX2UKGgGaAloD0MIFxHF5I09YUCUhpRSlGgVTegDaBZHQKQA5Ggi/wl1fZQoaAZoCWgPQwjdXWdDfk1jQJSGlFKUaBVN6ANoFkdApAOKckMTe3V9lChoBmgJaA9DCN47akwIUWBAlIaUUpRoFU3oA2gWR0CkA8iqZML4dX2UKGgGaAloD0MI2V2gpEDVZECUhpRSlGgVTegDaBZHQKQGYgHu7Yl1fZQoaAZoCWgPQwikVS3pqGliQJSGlFKUaBVN6ANoFkdApAxBhQWN3nV9lChoBmgJaA9DCB0c7E0M7V5AlIaUUpRoFU3oA2gWR0CkDPCrLhaUdX2UKGgGaAloD0MINPRPcLGWYkCUhpRSlGgVTegDaBZHQKQTXNW2gFp1fZQoaAZoCWgPQwjFH0WduQcTwJSGlFKUaBVNPwFoFkdApBtFEqlP8HV9lChoBmgJaA9DCIyeW+hKG15AlIaUUpRoFU3oA2gWR0CkHIPJA+pwdX2UKGgGaAloD0MIZmzoZv+YYECUhpRSlGgVTegDaBZHQKQdoIcinpB1fZQoaAZoCWgPQwhnutdJfaJkQJSGlFKUaBVN6ANoFkdApCGU7W/ag3V9lChoBmgJaA9DCIgNFk7SzWJAlIaUUpRoFU3oA2gWR0CkJAv5HmRvdX2UKGgGaAloD0MIgSOBBhvBY0CUhpRSlGgVTegDaBZHQKQnQu3c5811fZQoaAZoCWgPQwggmnlyTdhdQJSGlFKUaBVN6ANoFkdApCfvuw5eaHV9lChoBmgJaA9DCBuC4zJugjBAlIaUUpRoFU1iAWgWR0CkKIOMERradX2UKGgGaAloD0MIcvkP6bcfW0CUhpRSlGgVTegDaBZHQKQqFjsD4g11fZQoaAZoCWgPQwj3lJwT+yFkQJSGlFKUaBVN6ANoFkdApCqKWeHzpXV9lChoBmgJaA9DCIl7LH3olWFAlIaUUpRoFU3oA2gWR0CkLYgKWszVdX2UKGgGaAloD0MIOCwN/CjJZECUhpRSlGgVTegDaBZHQKQwFO3UhFF1fZQoaAZoCWgPQwjNHf0v1yIJQJSGlFKUaBVL02gWR0CkMk2qtHQQdX2UKGgGaAloD0MIHjLlQ1DJWUCUhpRSlGgVTegDaBZHQKQy65avA451fZQoaAZoCWgPQwi6vDlcq8NfQJSGlFKUaBVN6ANoFkdApDMn/Pw/gXV9lChoBmgJaA9DCIhH4uVpgmRAlIaUUpRoFU3oA2gWR0CkO9/LLZBcdX2UKGgGaAloD0MIm44AbpbTYUCUhpRSlGgVTegDaBZHQKQ8mmShakh1fZQoaAZoCWgPQwjt8q0P6wthQJSGlFKUaBVN6ANoFkdApEPc/0NBnnV9lChoBmgJaA9DCB41JsTcm2NAlIaUUpRoFU3oA2gWR0CkTMM7uDzzdX2UKGgGaAloD0MIuB0aFqN6ZECUhpRSlGgVTegDaBZHQKRN/AM2FWZ1fZQoaAZoCWgPQwhCeoocIm70v5SGlFKUaBVNMQFoFkdApFE9dNWU8nV9lChoBmgJaA9DCC2xMhr5JV5AlIaUUpRoFU3oA2gWR0CkUkw97ngYdX2UKGgGaAloD0MI/9DMk2ssYUCUhpRSlGgVTegDaBZHQKRUuMWoFV11fZQoaAZoCWgPQwhKYd7jTGRfQJSGlFKUaBVN6ANoFkdApFfaCHymRHV9lChoBmgJaA9DCGx2pPrOzxJAlIaUUpRoFU0gAWgWR0CkWCH1vl2edX2UKGgGaAloD0MIhJz3/3GsYUCUhpRSlGgVTegDaBZHQKRYd18stkF1fZQoaAZoCWgPQwiQ3QVKilliQJSGlFKUaBVN6ANoFkdApFkBy0a6z3V9lChoBmgJaA9DCCWVKeYgjmJAlIaUUpRoFU3oA2gWR0CkWu30f5k9dX2UKGgGaAloD0MIJh3lYDZJQ8CUhpRSlGgVTSQBaBZHQKRdHzMibDx1fZQoaAZoCWgPQwgZr3lVZwBeQJSGlFKUaBVN6ANoFkdApF3QBzV+Z3V9lChoBmgJaA9DCEjgDz9/pmBAlIaUUpRoFU3oA2gWR0CkYBNyYG+sdX2UKGgGaAloD0MITrUWZiGWY0CUhpRSlGgVTegDaBZHQKRh8/Tspod1fZQoaAZoCWgPQwj2KFyPwrRaQJSGlFKUaBVN6ANoFkdApGJ3K6nR9nV9lChoBmgJaA9DCL8rgv8tOmZAlIaUUpRoFU3oA2gWR0CkYqkNFz+4dX2UKGgGaAloD0MIL9tOWyOyLcCUhpRSlGgVTSkBaBZHQKRiso7V8Tl1fZQoaAZoCWgPQwiIEFfOXvVgQJSGlFKUaBVN6ANoFkdApGnPWJ79h3V9lChoBmgJaA9DCHQK8rOR+ydAlIaUUpRoFU0wAWgWR0CkbbFIVdondX2UKGgGaAloD0MIuycPCzVJYkCUhpRSlGgVTegDaBZHQKRxgBf8dgh1fZQoaAZoCWgPQwhyi/m5IW1mQJSGlFKUaBVN6ANoFkdApHvJigCfYnV9lChoBmgJaA9DCEa28/3ULmJAlIaUUpRoFU3oA2gWR0Ckf0AJTl1bdX2UKGgGaAloD0MIBADHnj3TXkCUhpRSlGgVTegDaBZHQKSC9CKrJbN1fZQoaAZoCWgPQwjo24Kluq9iQJSGlFKUaBVN6ANoFkdApIYxHCoCMnV9lChoBmgJaA9DCNvcmJ4wkWBAlIaUUpRoFU3oA2gWR0Ckhsu14Pf9dX2UKGgGaAloD0MIyM1wA756ZUCUhpRSlGgVTegDaBZHQKSHVr30wrV1fZQoaAZoCWgPQwg0v5oDBK1jQJSGlFKUaBVN6ANoFkdApIlTOZ9d/3V9lChoBmgJaA9DCJ3y6EZYE3BAlIaUUpRoFU2zA2gWR0CkiaUOEug6dX2UKGgGaAloD0MIPpRoyeM/X0CUhpRSlGgVTegDaBZHQKSMGh7mdRR1fZQoaAZoCWgPQwjlRSbg12JiQJSGlFKUaBVN6ANoFkdApI5aE12q1nV9lChoBmgJaA9DCGMIAI492l5AlIaUUpRoFU3oA2gWR0CkkDFnIyTIdX2UKGgGaAloD0MI6J/gYkULX0CUhpRSlGgVTegDaBZHQKSQ5P+n62x1fZQoaAZoCWgPQwj2tS41wnRgQJSGlFKUaBVN6ANoFkdApJDwtcv/R3V9lChoBmgJaA9DCKWHodXJ2SlAlIaUUpRoFU0RAWgWR0CkleYsEq2CdX2UKGgGaAloD0MIjzaOWIvPUECUhpRSlGgVTegDaBZHQKSYw0aZQYV1fZQoaAZoCWgPQwjcoPZbu9ljQJSGlFKUaBVN6ANoFkdApJy7i++M63V9lChoBmgJaA9DCLvQXKeRX2NAlIaUUpRoFU3oA2gWR0CkoINrKvFFdX2UKGgGaAloD0MIgse3d404YkCUhpRSlGgVTegDaBZHQKSjHxLkCFN1fZQoaAZoCWgPQwiFI0ilWA1iQJSGlFKUaBVN6ANoFkdApK4SQo1DSnV9lChoBmgJaA9DCGDNAYI5pmVAlIaUUpRoFU3oA2gWR0CksgNEgGKRdX2UKGgGaAloD0MIz4WRXlTbY0CUhpRSlGgVTegDaBZHQKS1j2HtWuJ1fZQoaAZoCWgPQwjiPJzAdGNbQJSGlFKUaBVN6ANoFkdApLZFJ17pmnV9lChoBmgJaA9DCAFNhA3Pf2FAlIaUUpRoFU3oA2gWR0CktuoPbwjMdX2UKGgGaAloD0MIZRwj2aPvZUCUhpRSlGgVTegDaBZHQKS5PXd0q6R1fZQoaAZoCWgPQwiVuI5xxXRZQJSGlFKUaBVN6ANoFkdApLmebLEDQ3V9lChoBmgJaA9DCIXOa+ySbGBAlIaUUpRoFU3oA2gWR0Ckvyq5LAYYdX2UKGgGaAloD0MIdeWzPA8+WkCUhpRSlGgVTegDaBZHQKTBSo1k1/F1fZQoaAZoCWgPQwi5jQbwFrthQJSGlFKUaBVN6ANoFkdApMIT/Khcq3V9lChoBmgJaA9DCBO1NLdCnGFAlIaUUpRoFU3oA2gWR0Ckwh+GGmDUdX2UKGgGaAloD0MIOGvwvioBX0CUhpRSlGgVTegDaBZHQKTHRTn7pFF1fZQoaAZoCWgPQwgLXvQVpJ9jQJSGlFKUaBVN6ANoFkdApMoJOJtSAHV9lChoBmgJaA9DCMnmqnkOyWNAlIaUUpRoFU3oA2gWR0CkzZoEjgQ6dX2UKGgGaAloD0MI/YhfsYaWY0CUhpRSlGgVTegDaBZHQKTQ7ZjhDPZ1fZQoaAZoCWgPQwiHFAMkmqtbQJSGlFKUaBVN6ANoFkdApNMwvpQk5nV9lChoBmgJaA9DCMug2uBE3F9AlIaUUpRoFU3oA2gWR0Ck3ZbTDwYtdX2UKGgGaAloD0MIDi4dc54gZECUhpRSlGgVTegDaBZHQKTgxoM8YAN1fZQoaAZoCWgPQwgFNBE2PDheQJSGlFKUaBVN6ANoFkdApOOjDjzZpXV9lChoBmgJaA9DCCbD8XwG1mFAlIaUUpRoFU3oA2gWR0Ck5DoDoyKvdX2UKGgGaAloD0MIoS+9/TkBYkCUhpRSlGgVTegDaBZHQKTkuBU70Wd1fZQoaAZoCWgPQwgFNufgGRBlQJSGlFKUaBVN6ANoFkdApOZ4iu+yq3V9lChoBmgJaA9DCCV1ApoIeGJAlIaUUpRoFU3oA2gWR0Ck5sMa0hNedX2UKGgGaAloD0MIWoKMgIoyY0CUhpRSlGgVTegDaBZHQKTq2PPLPld1fZQoaAZoCWgPQwg7AU2EDSBbQJSGlFKUaBVN6ANoFkdApOynpD/lyXV9lChoBmgJaA9DCEVKs3kcoEFAlIaUUpRoFUv8aBZHQKTsqYFaB7N1fZQoaAZoCWgPQwiastMP6khgQJSGlFKUaBVN6ANoFkdApO1Ked07sHV9lChoBmgJaA9DCHWtvU9VTmBAlIaUUpRoFU3oA2gWR0Ck7VSAYpDvdX2UKGgGaAloD0MI4dQHkvf8ZECUhpRSlGgVTegDaBZHQKTxvS0BwMp1fZQoaAZoCWgPQwg0D2CR30hjQJSGlFKUaBVN6ANoFkdApPRIAn2IwnV9lChoBmgJaA9DCF4R/G8lTmVAlIaUUpRoFU3oA2gWR0Ck+ApokAxSdX2UKGgGaAloD0MIOxkcJS8gZECUhpRSlGgVTegDaBZHQKT7tYwqRU51fZQoaAZoCWgPQwhJEK6AQu1kQJSGlFKUaBVN6ANoFkdApP5Zr1uivnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a8702cafa719053ef24b340f58c0e6f60d38161110871cff51566c2f1e27636
|
3 |
+
size 144051
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7499ce7d40>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7499ce7dd0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7499ce7e60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7499ce7ef0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7499ce7f80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7499cef050>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7499cef0e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7499cef170>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7499cef200>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7499cef290>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7499cef320>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f7499d46150>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652108837.3781831,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAG2rkT7YxJQ/5NIOPubtNr4kPoQ+JmiFvgAAAAAAAAAAJr3MPY/ucrqFZFe6wHkJtq+lkTou+3c5AACAPwAAgD9ztwO+uHagOkvwD7nsNMU17X6DvIf1NDgAAIA/AACAP3PV4r3scf+5m2hHO3JfrzflqHe7APwTugAAgD8AAIA/ZhaMO49WR7pQwZe75G4et/LDXTutoa46AACAPwAAgD/NvEo7KUhiulJCJbszZ1a2mOWKO63hPToAAIA/AACAP+AsGz72RRK8SnMcPMdegrqxfHi9zgNYuwAAgD8AAIA/AEhoPfYMS7oz/+C7o8zjN3CNvzqW2yy3AACAPwAAgD+T6rs+47t3P73n3ryabZ6+AYepPfJXa70AAAAAAAAAAFpA/j3X4044YkWAu3A9r7fU5VY7pbckOQAAgD8AAIA/ADDbukjbirrtpFW7zZw8tsdcfzrWZ3g6AACAPwAAgD9NLCS99vR9uuKOXrsi7zY1u8HJOULZpbQAAIA/AACAPzNBkbxkZ5M+0wQhPIoXoL6NWFy8PmoZvAAAAAAAAAAAZnamOo+qd7q2ITg65GNXtge4CrvGoVS5AACAPwAAgD9mx5O9SEuZumqBHDm1lgM0Aii4utaeNLgAAIA/AACAP8DMuL3D2Tq60Bx4u4CC0Da68Vo5/ao+tgAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7Sk5J/aPVECUhpRSlIwBbJRN6AOMAXSUR0Cj+C1sk6cRdX2UKGgGaAloD0MIBWnGouleWkCUhpRSlGgVTegDaBZHQKP6jVAiV0N1fZQoaAZoCWgPQwjbheY6jZViQJSGlFKUaBVN6ANoFkdAo/sc1l5GBnV9lChoBmgJaA9DCLzJb9HJc2FAlIaUUpRoFU3oA2gWR0Cj/mDLB9CvdX2UKGgGaAloD0MIFxHF5I09YUCUhpRSlGgVTegDaBZHQKQA5Ggi/wl1fZQoaAZoCWgPQwjdXWdDfk1jQJSGlFKUaBVN6ANoFkdApAOKckMTe3V9lChoBmgJaA9DCN47akwIUWBAlIaUUpRoFU3oA2gWR0CkA8iqZML4dX2UKGgGaAloD0MI2V2gpEDVZECUhpRSlGgVTegDaBZHQKQGYgHu7Yl1fZQoaAZoCWgPQwikVS3pqGliQJSGlFKUaBVN6ANoFkdApAxBhQWN3nV9lChoBmgJaA9DCB0c7E0M7V5AlIaUUpRoFU3oA2gWR0CkDPCrLhaUdX2UKGgGaAloD0MINPRPcLGWYkCUhpRSlGgVTegDaBZHQKQTXNW2gFp1fZQoaAZoCWgPQwjFH0WduQcTwJSGlFKUaBVNPwFoFkdApBtFEqlP8HV9lChoBmgJaA9DCIyeW+hKG15AlIaUUpRoFU3oA2gWR0CkHIPJA+pwdX2UKGgGaAloD0MIZmzoZv+YYECUhpRSlGgVTegDaBZHQKQdoIcinpB1fZQoaAZoCWgPQwhnutdJfaJkQJSGlFKUaBVN6ANoFkdApCGU7W/ag3V9lChoBmgJaA9DCIgNFk7SzWJAlIaUUpRoFU3oA2gWR0CkJAv5HmRvdX2UKGgGaAloD0MIgSOBBhvBY0CUhpRSlGgVTegDaBZHQKQnQu3c5811fZQoaAZoCWgPQwggmnlyTdhdQJSGlFKUaBVN6ANoFkdApCfvuw5eaHV9lChoBmgJaA9DCBuC4zJugjBAlIaUUpRoFU1iAWgWR0CkKIOMERradX2UKGgGaAloD0MIcvkP6bcfW0CUhpRSlGgVTegDaBZHQKQqFjsD4g11fZQoaAZoCWgPQwj3lJwT+yFkQJSGlFKUaBVN6ANoFkdApCqKWeHzpXV9lChoBmgJaA9DCIl7LH3olWFAlIaUUpRoFU3oA2gWR0CkLYgKWszVdX2UKGgGaAloD0MIOCwN/CjJZECUhpRSlGgVTegDaBZHQKQwFO3UhFF1fZQoaAZoCWgPQwjNHf0v1yIJQJSGlFKUaBVL02gWR0CkMk2qtHQQdX2UKGgGaAloD0MIHjLlQ1DJWUCUhpRSlGgVTegDaBZHQKQy65avA451fZQoaAZoCWgPQwi6vDlcq8NfQJSGlFKUaBVN6ANoFkdApDMn/Pw/gXV9lChoBmgJaA9DCIhH4uVpgmRAlIaUUpRoFU3oA2gWR0CkO9/LLZBcdX2UKGgGaAloD0MIm44AbpbTYUCUhpRSlGgVTegDaBZHQKQ8mmShakh1fZQoaAZoCWgPQwjt8q0P6wthQJSGlFKUaBVN6ANoFkdApEPc/0NBnnV9lChoBmgJaA9DCB41JsTcm2NAlIaUUpRoFU3oA2gWR0CkTMM7uDzzdX2UKGgGaAloD0MIuB0aFqN6ZECUhpRSlGgVTegDaBZHQKRN/AM2FWZ1fZQoaAZoCWgPQwhCeoocIm70v5SGlFKUaBVNMQFoFkdApFE9dNWU8nV9lChoBmgJaA9DCC2xMhr5JV5AlIaUUpRoFU3oA2gWR0CkUkw97ngYdX2UKGgGaAloD0MI/9DMk2ssYUCUhpRSlGgVTegDaBZHQKRUuMWoFV11fZQoaAZoCWgPQwhKYd7jTGRfQJSGlFKUaBVN6ANoFkdApFfaCHymRHV9lChoBmgJaA9DCGx2pPrOzxJAlIaUUpRoFU0gAWgWR0CkWCH1vl2edX2UKGgGaAloD0MIhJz3/3GsYUCUhpRSlGgVTegDaBZHQKRYd18stkF1fZQoaAZoCWgPQwiQ3QVKilliQJSGlFKUaBVN6ANoFkdApFkBy0a6z3V9lChoBmgJaA9DCCWVKeYgjmJAlIaUUpRoFU3oA2gWR0CkWu30f5k9dX2UKGgGaAloD0MIJh3lYDZJQ8CUhpRSlGgVTSQBaBZHQKRdHzMibDx1fZQoaAZoCWgPQwgZr3lVZwBeQJSGlFKUaBVN6ANoFkdApF3QBzV+Z3V9lChoBmgJaA9DCEjgDz9/pmBAlIaUUpRoFU3oA2gWR0CkYBNyYG+sdX2UKGgGaAloD0MITrUWZiGWY0CUhpRSlGgVTegDaBZHQKRh8/Tspod1fZQoaAZoCWgPQwj2KFyPwrRaQJSGlFKUaBVN6ANoFkdApGJ3K6nR9nV9lChoBmgJaA9DCL8rgv8tOmZAlIaUUpRoFU3oA2gWR0CkYqkNFz+4dX2UKGgGaAloD0MIL9tOWyOyLcCUhpRSlGgVTSkBaBZHQKRiso7V8Tl1fZQoaAZoCWgPQwiIEFfOXvVgQJSGlFKUaBVN6ANoFkdApGnPWJ79h3V9lChoBmgJaA9DCHQK8rOR+ydAlIaUUpRoFU0wAWgWR0CkbbFIVdondX2UKGgGaAloD0MIuycPCzVJYkCUhpRSlGgVTegDaBZHQKRxgBf8dgh1fZQoaAZoCWgPQwhyi/m5IW1mQJSGlFKUaBVN6ANoFkdApHvJigCfYnV9lChoBmgJaA9DCEa28/3ULmJAlIaUUpRoFU3oA2gWR0Ckf0AJTl1bdX2UKGgGaAloD0MIBADHnj3TXkCUhpRSlGgVTegDaBZHQKSC9CKrJbN1fZQoaAZoCWgPQwjo24Kluq9iQJSGlFKUaBVN6ANoFkdApIYxHCoCMnV9lChoBmgJaA9DCNvcmJ4wkWBAlIaUUpRoFU3oA2gWR0Ckhsu14Pf9dX2UKGgGaAloD0MIyM1wA756ZUCUhpRSlGgVTegDaBZHQKSHVr30wrV1fZQoaAZoCWgPQwg0v5oDBK1jQJSGlFKUaBVN6ANoFkdApIlTOZ9d/3V9lChoBmgJaA9DCJ3y6EZYE3BAlIaUUpRoFU2zA2gWR0CkiaUOEug6dX2UKGgGaAloD0MIPpRoyeM/X0CUhpRSlGgVTegDaBZHQKSMGh7mdRR1fZQoaAZoCWgPQwjlRSbg12JiQJSGlFKUaBVN6ANoFkdApI5aE12q1nV9lChoBmgJaA9DCGMIAI492l5AlIaUUpRoFU3oA2gWR0CkkDFnIyTIdX2UKGgGaAloD0MI6J/gYkULX0CUhpRSlGgVTegDaBZHQKSQ5P+n62x1fZQoaAZoCWgPQwj2tS41wnRgQJSGlFKUaBVN6ANoFkdApJDwtcv/R3V9lChoBmgJaA9DCKWHodXJ2SlAlIaUUpRoFU0RAWgWR0CkleYsEq2CdX2UKGgGaAloD0MIjzaOWIvPUECUhpRSlGgVTegDaBZHQKSYw0aZQYV1fZQoaAZoCWgPQwjcoPZbu9ljQJSGlFKUaBVN6ANoFkdApJy7i++M63V9lChoBmgJaA9DCLvQXKeRX2NAlIaUUpRoFU3oA2gWR0CkoINrKvFFdX2UKGgGaAloD0MIgse3d404YkCUhpRSlGgVTegDaBZHQKSjHxLkCFN1fZQoaAZoCWgPQwiFI0ilWA1iQJSGlFKUaBVN6ANoFkdApK4SQo1DSnV9lChoBmgJaA9DCGDNAYI5pmVAlIaUUpRoFU3oA2gWR0CksgNEgGKRdX2UKGgGaAloD0MIz4WRXlTbY0CUhpRSlGgVTegDaBZHQKS1j2HtWuJ1fZQoaAZoCWgPQwjiPJzAdGNbQJSGlFKUaBVN6ANoFkdApLZFJ17pmnV9lChoBmgJaA9DCAFNhA3Pf2FAlIaUUpRoFU3oA2gWR0CktuoPbwjMdX2UKGgGaAloD0MIZRwj2aPvZUCUhpRSlGgVTegDaBZHQKS5PXd0q6R1fZQoaAZoCWgPQwiVuI5xxXRZQJSGlFKUaBVN6ANoFkdApLmebLEDQ3V9lChoBmgJaA9DCIXOa+ySbGBAlIaUUpRoFU3oA2gWR0Ckvyq5LAYYdX2UKGgGaAloD0MIdeWzPA8+WkCUhpRSlGgVTegDaBZHQKTBSo1k1/F1fZQoaAZoCWgPQwi5jQbwFrthQJSGlFKUaBVN6ANoFkdApMIT/Khcq3V9lChoBmgJaA9DCBO1NLdCnGFAlIaUUpRoFU3oA2gWR0Ckwh+GGmDUdX2UKGgGaAloD0MIOGvwvioBX0CUhpRSlGgVTegDaBZHQKTHRTn7pFF1fZQoaAZoCWgPQwgLXvQVpJ9jQJSGlFKUaBVN6ANoFkdApMoJOJtSAHV9lChoBmgJaA9DCMnmqnkOyWNAlIaUUpRoFU3oA2gWR0CkzZoEjgQ6dX2UKGgGaAloD0MI/YhfsYaWY0CUhpRSlGgVTegDaBZHQKTQ7ZjhDPZ1fZQoaAZoCWgPQwiHFAMkmqtbQJSGlFKUaBVN6ANoFkdApNMwvpQk5nV9lChoBmgJaA9DCMug2uBE3F9AlIaUUpRoFU3oA2gWR0Ck3ZbTDwYtdX2UKGgGaAloD0MIDi4dc54gZECUhpRSlGgVTegDaBZHQKTgxoM8YAN1fZQoaAZoCWgPQwgFNBE2PDheQJSGlFKUaBVN6ANoFkdApOOjDjzZpXV9lChoBmgJaA9DCCbD8XwG1mFAlIaUUpRoFU3oA2gWR0Ck5DoDoyKvdX2UKGgGaAloD0MIoS+9/TkBYkCUhpRSlGgVTegDaBZHQKTkuBU70Wd1fZQoaAZoCWgPQwgFNufgGRBlQJSGlFKUaBVN6ANoFkdApOZ4iu+yq3V9lChoBmgJaA9DCCV1ApoIeGJAlIaUUpRoFU3oA2gWR0Ck5sMa0hNedX2UKGgGaAloD0MIWoKMgIoyY0CUhpRSlGgVTegDaBZHQKTq2PPLPld1fZQoaAZoCWgPQwg7AU2EDSBbQJSGlFKUaBVN6ANoFkdApOynpD/lyXV9lChoBmgJaA9DCEVKs3kcoEFAlIaUUpRoFUv8aBZHQKTsqYFaB7N1fZQoaAZoCWgPQwiastMP6khgQJSGlFKUaBVN6ANoFkdApO1Ked07sHV9lChoBmgJaA9DCHWtvU9VTmBAlIaUUpRoFU3oA2gWR0Ck7VSAYpDvdX2UKGgGaAloD0MI4dQHkvf8ZECUhpRSlGgVTegDaBZHQKTxvS0BwMp1fZQoaAZoCWgPQwg0D2CR30hjQJSGlFKUaBVN6ANoFkdApPRIAn2IwnV9lChoBmgJaA9DCF4R/G8lTmVAlIaUUpRoFU3oA2gWR0Ck+ApokAxSdX2UKGgGaAloD0MIOxkcJS8gZECUhpRSlGgVTegDaBZHQKT7tYwqRU51fZQoaAZoCWgPQwhJEK6AQu1kQJSGlFKUaBVN6ANoFkdApP5Zr1uivnVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 128,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9cfd03423d81078dc5fde0d2add869acab2d2341d993c35edec2b149397247d0
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ecb7f03b8aad45f682c1c57a1eae9b658f326573906957b0882ae06f8e61e6e0
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8cb02fe6ec4db675485de5c646f8708b320cfdd084df7eb1d014fc8ed78c349
|
3 |
+
size 227283
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 217.14713421856936, "std_reward": 49.990691655578615, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T15:30:27.045527"}
|