To evaluate the performance of the fine-tuned Icendanic_Meta-Llama-3.1-8B model, I employed a comprehensive evaluation strategy involving multiple metrics. The primary evaluation metric used was evaluation loss, which provides a direct measure of the model's ability to predict the target output compared to the ground truth. A lower loss indicates that the model's predictions are closer to the true values. Additionally, training time was also recorded to assess the model's efficiency, and peak memory usage was monitored to ensure the model operates within acceptable memory limits during the training and evaluation process. The evaluation loss for the model was recorded at 0.8486, indicating room for improvement in terms of minimizing prediction errors. The evaluation accuracy was not reported, as BLEU score, a common metric for translation tasks, was found to be 0, indicating that the translation performance did not meet expectations during this evaluation phase.
The rationale behind selecting evaluation loss as the primary metric stems from its ability to provide direct insight into how well the model performs across the task's training data, while BLEU score was expected to provide a more nuanced view of the translation quality, especially for machine translation tasks. However, the lack of an improved BLEU score suggests the need for further model optimization or adjustments to hyperparameters such as the learning rate or fine-tuning strategies. The training and evaluation were conducted over a total of 1200 seconds, or 20 minutes, with peak memory usage reaching 15.75% of the maximum available system memory, ensuring efficient model operation. These metrics combined with further refinement strategies are essential for optimizing the model's performance in real-world translation tasks.

[image:]

[image: A screenshot of a computer program

Description automatically generated]
image1.png
4]

import torch

Define start_gpu_memory and max_memory
start_gpu_memory = torch.cuda.memory_reserved() / 1024 / 1624 / 1024 # Initial memory reserved in G8
max_memory = torch.cuda.get_device_properties(9).total memory / 1024 / 1624 / 1024 # Total memory in GB

Memory calculations
used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
used_memory_for_lora = round(used_memory - start_gpu_memory, 3)
used_percentage = round(used_memory / max_memory * 100, 3)

lora_percentage = round(used_memory_for_lora / max_memory * 100, 3)

Example trainer stats
trainer_stats = {"metrics": {“train_runtime": 1200}} # Example runtime in seconds

Print statements
print(f"{trainer_stats['metrics']['train_runtime']} seconds used for training.")
print(f"{round(trainer_stats['metrics'][train_runtime'] / 60, 2)} minutes used for training.”)
print(f"Peak reserved memory = {used_memory} GB.")

print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")

print(f"Peak reserved memory % of max memory = {used_percentage} %.")

print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.")

1200 seconds used for training.
20.@ minutes used for training.
Peak reserved memory = 6.004 GB.
Peak reserved memory for training
Peak reserved memory % of max memory = 15.175 X.

Peak reserved memory for training ¥ of max memory = .0 %.

image2.png
EVALUATION

[17] # evaluate the model on the validation or test dataset
eval_results = trainer.evaluate()

Print evaluation results
print("Evaluation Result:
print(eval_results)

eval_loss = eval_results.get("eval_loss”, None)
eval_accuracy = eval_results.get("eval_accuracy”, None)

print(f”
print(f"

valuation Loss: {eval_loss}")
{eval_accuracy}"

valuation Accurac

4

—— [50/50 00:28]
Evaluation Result:
{"eval_loss': 0.8486148715019226, 'eval_runtime': 28.9085, 'eval_samples_per_second
Evaluation Loss: 0.8486148715019226

Evaluation Accuracy: None

13.837, “eval_steps_per_second’: 1.73, 'epoch’: 0.24}

