File size: 9,985 Bytes
3d59f40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
# -*- coding: utf-8 -*-
"""thota14.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1Muegp4GV6UHkiBYRzqf2uztvmPHWe8V_
**Midterm: Neural Network-Based Language
Model for Next Token Prediction**
"""
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import numpy as np
import re
from collections import Counter
from sklearn.model_selection import train_test_split
"""**Load Icelandic and English text files**"""
# Load Icelandic and English text files
with open('/content/Icelandic_sampled.txt', 'r', encoding='utf-8') as f:
icelandic_text = f.read()
with open('/content/alpaca_sampled.txt', 'r', encoding='utf-8') as f:
english_text = f.read()
print("Datasets loaded successfully.")
# Preprocessing function to clean text
def preprocess_text(text):
text = text.lower()
text = re.sub(r'[^a-zA-ZÍÚÁÉÓÖÞÆÉíúáéóöþæ ]', '', text) # Retain Icelandic letters
return text
# Apply preprocessing to both datasets
english_text = preprocess_text(english_text)
icelandic_text = preprocess_text(icelandic_text)
print(f"Sample of English Text: {english_text[:100]}")
print(f"Sample of Icelandic Text: {icelandic_text[:100]}")
"""** Tokenization function**"""
# Tokenization function
def tokenize(text):
return text.split()
english_tokens = tokenize(english_text)
icelandic_tokens = tokenize(icelandic_text)
print(f"English tokens: {len(english_tokens)}")
print(f"Icelandic tokens: {len(icelandic_tokens)}")
# Build vocabulary
def build_vocab(tokens):
vocab = Counter(tokens)
vocab = {word: i for i, (word, _) in enumerate(vocab.items())}
return vocab
# Create vocabularies for both languages
english_vocab = build_vocab(english_tokens)
icelandic_vocab = build_vocab(icelandic_tokens)
print(f"English Vocabulary Size: {len(english_vocab)}")
print(f"Icelandic Vocabulary Size: {len(icelandic_vocab)}")
# Convert tokens to indices
english_data = [english_vocab[word] for word in english_tokens]
icelandic_data = [icelandic_vocab[word] for word in icelandic_tokens]
# Combine datasets
combined_data = english_data + icelandic_data
print(f"Combined dataset size: {len(combined_data)}")
"""**Dataset class for sequence prediction**"""
# Dataset class for sequence prediction
class TextDataset(Dataset):
def __init__(self, data, sequence_length):
self.data = data
self.sequence_length = sequence_length
def __len__(self):
return len(self.data) - self.sequence_length
def __getitem__(self, idx):
return (torch.tensor(self.data[idx:idx + self.sequence_length]),
torch.tensor(self.data[idx + self.sequence_length]))
# Sequence length for training
sequence_length = 5
# Create the combined dataset
combined_dataset = TextDataset(combined_data, sequence_length)
print(f"Dataset length: {len(combined_dataset)}")
# Split into training and validation sets
train_data, val_data = train_test_split(combined_dataset, test_size=0.1)
print(f"Training samples: {len(train_data)}, Validation samples: {len(val_data)}")
# Create DataLoaders for training and validation
batch_size = 64
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_data, batch_size=batch_size, shuffle=False)
print(f"Batch size: {batch_size}")
print(f"Training batches: {len(train_loader)}, Validation batches: {len(val_loader)}")
"""**Loss function and optimizer**"""
# Loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(combined_model.parameters(), lr=0.001)
# Function to train the model and validate
def train_model(model, train_loader, val_loader, optimizer, num_epochs, checkpoint_path):
model.train()
train_losses, val_losses = [], []
for epoch in range(num_epochs):
epoch_train_loss = 0
for inputs, targets in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
epoch_train_loss += loss.item()
# Validation step
model.eval()
val_loss = 0
with torch.no_grad():
for inputs, targets in val_loader:
outputs = model(inputs)
loss = criterion(outputs, targets)
val_loss += loss.item()
train_losses.append(epoch_train_loss / len(train_loader))
val_losses.append(val_loss / len(val_loader))
# Save checkpoint for every epoch
torch.save(model.state_dict(), f'{checkpoint_path}_epoch{epoch+1}.pth')
print(f'Epoch {epoch+1}/{num_epochs}, Train Loss: {train_losses[-1]:.4f}, Val Loss: {val_losses[-1]:.4f}')
return train_losses, val_losses
import pandas as pd
import numpy as np
# Train the model
num_epochs = 10
train_losses, val_losses = train_model(combined_model, train_loader, val_loader, optimizer, num_epochs, 'combined_model_checkpoint')
# Save training and validation losses to a CSV file
losses_df = pd.DataFrame({
'Epoch': range(1, num_epochs + 1),
'Train_Loss': train_losses,
'Val_Loss': val_losses
})
losses_df.to_csv('training_validation_losses.csv', index=False)
"""**final model**"""
# Save the final model
torch.save(combined_model.state_dict(), 'combined_model.pth')
# Plot losses
import matplotlib.pyplot as plt
def plot_losses(train_losses, val_losses, title):
plt.plot(train_losses, label='Training Loss')
plt.plot(val_losses, label='Validation Loss')
plt.title(title)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.savefig('model_loss.png')
plt.show()
# Plot combined model losses
plot_losses(train_losses, val_losses, 'Combined Model Loss')
"""**perplexity based on the validation set**"""
# Calculate perplexity based on the validation set
def calculate_perplexity(model, val_loader):
model.eval()
total_loss = 0
total_words = 0
with torch.no_grad():
for inputs, targets in val_loader:
outputs = model(inputs)
loss = criterion(outputs, targets)
total_loss += loss.item()
total_words += targets.size(0)
avg_loss = total_loss / len(val_loader)
perplexity = np.exp(avg_loss)
return perplexity
# Perplexity calculation for the combined model
combined_perplexity = calculate_perplexity(combined_model, val_loader)
print(f'Combined Model Perplexity: {combined_perplexity:.2f}')
import numpy as np
import torch
import matplotlib.pyplot as plt
# Calculate perplexity based on the validation set
def calculate_perplexity(model, val_loader):
model.eval()
perplexity_values = [] # Store perplexity for each batch
total_loss = 0
with torch.no_grad():
for inputs, targets in val_loader:
outputs = model(inputs)
loss = criterion(outputs, targets)
total_loss += loss.item()
avg_loss = total_loss / (len(perplexity_values) + 1) # Average loss after each batch
perplexity = np.exp(avg_loss)
perplexity_values.append(perplexity) # Append current perplexity
return perplexity_values
# Perplexity calculation for the combined model
combined_perplexity = calculate_perplexity(combined_model, val_loader)
# Plotting perplexity values
plt.figure(figsize=(10, 6))
plt.plot(combined_perplexity, label='Model Perplexity', marker='o')
plt.title('Perplexity over Validation Set')
plt.xlabel('Batch Number')
plt.ylabel('Perplexity')
plt.yscale('log') # Log scale can help visualize perplexity better if the values vary widely
plt.legend()
plt.grid()
plt.show()
"""**Generate text**"""
import torch.nn.functional as F
# Ensure '<UNK>' token is in the vocabularies
if '<UNK>' not in english_vocab:
english_vocab['<UNK>'] = len(english_vocab)
if '<UNK>' not in icelandic_vocab:
icelandic_vocab['<UNK>'] = len(icelandic_vocab)
# Reverse vocab dictionaries
english_reverse_vocab = {idx: word for word, idx in english_vocab.items()}
icelandic_reverse_vocab = {idx: word for word, idx in icelandic_vocab.items()}
# Function to generate text
def generate_text(model, vocab, reverse_vocab, seed_text, max_length=50):
model.eval()
# Tokenize and convert seed text to indices
seed_tokens = [vocab.get(word, vocab['<UNK>']) for word in seed_text.split()]
input_seq = torch.tensor(seed_tokens).unsqueeze(0) # Add batch dimension
generated_text = seed_text.split()
with torch.no_grad():
for _ in range(max_length):
output = model(input_seq) # Forward pass
# Check the shape of the output
if len(output.shape) == 2:
# Handle (batch_size, vocab_size)
predictions = F.softmax(output, dim=-1)
else:
# Handle (batch_size, sequence_length, vocab_size)
predictions = F.softmax(output[:, -1, :], dim=-1)
next_token_idx = torch.argmax(predictions, dim=-1).item()
# Append the predicted token
next_token_word = reverse_vocab.get(next_token_idx, '<UNK>')
generated_text.append(next_token_word)
# Update input sequence with the predicted token
input_seq = torch.cat([input_seq, torch.tensor([[next_token_idx]])], dim=1)
return ' '.join(generated_text)
# Generate text in English
print("Generating text in English...")
seed_text = "Today is a good ohh yes"
generated_english = generate_text(combined_model, english_vocab, english_reverse_vocab, seed_text)
print("Generated English Text:", generated_english)
# Generate text in Icelandic
print("Generating text in Icelandic...")
seed_text_icelandic = "þetta mun auka"
generated_icelandic = generate_text(combined_model, icelandic_vocab, icelandic_reverse_vocab, seed_text_icelandic)
print("Generated Icelandic Text:", generated_icelandic)
"""END END""" |