Spaces:
Running
on
Zero
Running
on
Zero
Zeyu Zhao
commited on
Commit
Β·
4f86f8b
1
Parent(s):
1a89cb5
Init the repo.
Browse files- README.md +5 -6
- app.py +444 -0
- requirements.txt +30 -0
- src/__pycache__/image_prep.cpython-310.pyc +0 -0
- src/__pycache__/img2skt.cpython-312.pyc +0 -0
- src/__pycache__/model.cpython-310.pyc +0 -0
- src/__pycache__/model.cpython-312.pyc +0 -0
- src/__pycache__/pix2pix_turbo.cpython-310.pyc +0 -0
- src/__pycache__/pix2pix_turbo.cpython-312.pyc +0 -0
- src/image_prep.py +12 -0
- src/img2skt.py +83 -0
- src/model.py +71 -0
- src/pix2pix_turbo.py +209 -0
README.md
CHANGED
@@ -1,14 +1,13 @@
|
|
1 |
---
|
2 |
title: Sketch2Image
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license:
|
11 |
-
short_description: A Sketch2Image Demo
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
title: Sketch2Image
|
3 |
+
emoji: π
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: blue
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.15.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: mit
|
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,444 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import os
|
3 |
+
import pdb
|
4 |
+
import random
|
5 |
+
import sys
|
6 |
+
import time
|
7 |
+
from io import BytesIO
|
8 |
+
|
9 |
+
import gradio as gr
|
10 |
+
import numpy as np
|
11 |
+
import spaces
|
12 |
+
import torch
|
13 |
+
import torchvision.transforms.functional as TF
|
14 |
+
from PIL import Image
|
15 |
+
from torchvision import transforms
|
16 |
+
|
17 |
+
from src.img2skt import image_to_sketch_gif
|
18 |
+
from src.model import make_1step_sched
|
19 |
+
from src.pix2pix_turbo import Pix2Pix_Turbo
|
20 |
+
|
21 |
+
model = Pix2Pix_Turbo("sketch_to_image_stochastic")
|
22 |
+
|
23 |
+
|
24 |
+
style_list = [
|
25 |
+
{
|
26 |
+
"name": "No Style",
|
27 |
+
"prompt": "{prompt}",
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"name": "Cinematic",
|
31 |
+
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"name": "3D Model",
|
35 |
+
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"name": "Anime",
|
39 |
+
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"name": "Digital Art",
|
43 |
+
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"name": "Photographic",
|
47 |
+
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"name": "Pixel art",
|
51 |
+
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"name": "Fantasy art",
|
55 |
+
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"name": "Neonpunk",
|
59 |
+
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"name": "Manga",
|
63 |
+
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
|
64 |
+
},
|
65 |
+
]
|
66 |
+
|
67 |
+
styles = {k["name"]: k["prompt"] for k in style_list}
|
68 |
+
STYLE_NAMES = list(styles.keys())
|
69 |
+
DEFAULT_STYLE_NAME = "Manga"
|
70 |
+
MAX_SEED = np.iinfo(np.int32).max
|
71 |
+
|
72 |
+
HEIGHT = 512
|
73 |
+
WIDTH = 512
|
74 |
+
ITER_DELAY = 1.0
|
75 |
+
|
76 |
+
|
77 |
+
# Create a white background image
|
78 |
+
def create_white_background(width, height):
|
79 |
+
return Image.new("RGB", (width, height), color="white")
|
80 |
+
|
81 |
+
|
82 |
+
white_background = create_white_background(WIDTH, HEIGHT)
|
83 |
+
|
84 |
+
|
85 |
+
@spaces.GPU(duration=45)
|
86 |
+
def run(image, prompt, prompt_template, style_name, seed, val_r):
|
87 |
+
|
88 |
+
image = image["composite"]
|
89 |
+
prompt = prompt_template.replace("{prompt}", prompt)
|
90 |
+
image = image.convert("RGB")
|
91 |
+
image = Image.fromarray(255 - np.array(image))
|
92 |
+
image_t = TF.to_tensor(image) > 0.5
|
93 |
+
|
94 |
+
with torch.no_grad():
|
95 |
+
c_t = image_t.unsqueeze(0).cuda().float()
|
96 |
+
torch.manual_seed(seed)
|
97 |
+
B, C, H, W = c_t.shape
|
98 |
+
noise = torch.randn((1, 4, H // 8, W // 8), device=c_t.device)
|
99 |
+
output_image = model(c_t, prompt, deterministic=False, r=val_r, noise_map=noise)
|
100 |
+
output_pil = TF.to_pil_image(output_image[0].cpu() * 0.5 + 0.5)
|
101 |
+
return output_pil
|
102 |
+
|
103 |
+
|
104 |
+
def clear_image_editor():
|
105 |
+
return (
|
106 |
+
{"background": white_background, "layers": None, "composite": white_background},
|
107 |
+
gr.Image(
|
108 |
+
value=None,
|
109 |
+
height=HEIGHT,
|
110 |
+
width=WIDTH,
|
111 |
+
elem_id="output_image",
|
112 |
+
type="pil",
|
113 |
+
show_label=False,
|
114 |
+
show_download_button=True,
|
115 |
+
interactive=False,
|
116 |
+
),
|
117 |
+
gr.Image(
|
118 |
+
value=None,
|
119 |
+
height=HEIGHT,
|
120 |
+
width=WIDTH,
|
121 |
+
show_label=False,
|
122 |
+
show_download_button=True,
|
123 |
+
type="pil",
|
124 |
+
interactive=False,
|
125 |
+
),
|
126 |
+
gr.Image(
|
127 |
+
value=None,
|
128 |
+
height=HEIGHT,
|
129 |
+
width=WIDTH,
|
130 |
+
show_label=False,
|
131 |
+
show_download_button=True,
|
132 |
+
type="pil",
|
133 |
+
interactive=False,
|
134 |
+
),
|
135 |
+
gr.State([]),
|
136 |
+
gr.Slider(
|
137 |
+
minimum=0,
|
138 |
+
maximum=1,
|
139 |
+
value=0,
|
140 |
+
step=1,
|
141 |
+
visible=False,
|
142 |
+
scale=4,
|
143 |
+
label="Frame Selector",
|
144 |
+
),
|
145 |
+
gr.Button("Stop", scale=1, visible=True),
|
146 |
+
)
|
147 |
+
|
148 |
+
|
149 |
+
def iter_frames(frames):
|
150 |
+
for frame in frames:
|
151 |
+
time.sleep(ITER_DELAY)
|
152 |
+
yield frame
|
153 |
+
|
154 |
+
|
155 |
+
def apply_func_click():
|
156 |
+
return gr.Slider(
|
157 |
+
visible=True,
|
158 |
+
)
|
159 |
+
|
160 |
+
|
161 |
+
with gr.Blocks() as demo:
|
162 |
+
|
163 |
+
with gr.Row():
|
164 |
+
with gr.Column():
|
165 |
+
# gr.Markdown("## INPUT", elem_id="input_header")
|
166 |
+
with gr.Row():
|
167 |
+
image = gr.Sketchpad(
|
168 |
+
value={
|
169 |
+
"background": white_background,
|
170 |
+
"layers": None,
|
171 |
+
"composite": white_background,
|
172 |
+
},
|
173 |
+
image_mode="L",
|
174 |
+
type="pil",
|
175 |
+
sources=None,
|
176 |
+
# container=True,
|
177 |
+
label="Sketch",
|
178 |
+
show_label=True,
|
179 |
+
show_download_button=True,
|
180 |
+
# show_share_button=True,
|
181 |
+
interactive=True,
|
182 |
+
layers=False,
|
183 |
+
canvas_size=(WIDTH, HEIGHT),
|
184 |
+
show_fullscreen_button=False,
|
185 |
+
brush=gr.Brush(
|
186 |
+
colors=["#000000", "#FFFFFF"],
|
187 |
+
color_mode="fixed",
|
188 |
+
default_size=4,
|
189 |
+
),
|
190 |
+
)
|
191 |
+
|
192 |
+
with gr.Row():
|
193 |
+
prompt = gr.Textbox(label="Prompt", value="", show_label=True)
|
194 |
+
with gr.Row():
|
195 |
+
run_button = gr.Button("Run", scale=1)
|
196 |
+
randomize_seed = gr.Button("Random", scale=1)
|
197 |
+
with gr.Row():
|
198 |
+
apply_button = gr.Button("Stop", scale=1, visible=True)
|
199 |
+
with gr.Row():
|
200 |
+
frame_selector = gr.Slider(
|
201 |
+
minimum=0,
|
202 |
+
maximum=1,
|
203 |
+
value=0,
|
204 |
+
step=1,
|
205 |
+
visible=False,
|
206 |
+
scale=4,
|
207 |
+
label="Frame Selector",
|
208 |
+
)
|
209 |
+
|
210 |
+
with gr.Row():
|
211 |
+
style = gr.Dropdown(
|
212 |
+
label="Style",
|
213 |
+
choices=STYLE_NAMES,
|
214 |
+
value=DEFAULT_STYLE_NAME,
|
215 |
+
scale=1,
|
216 |
+
visible=False,
|
217 |
+
)
|
218 |
+
prompt_temp = gr.Textbox(
|
219 |
+
label="Prompt Style Template",
|
220 |
+
value=styles[DEFAULT_STYLE_NAME],
|
221 |
+
max_lines=1,
|
222 |
+
scale=2,
|
223 |
+
visible=False,
|
224 |
+
)
|
225 |
+
|
226 |
+
with gr.Row():
|
227 |
+
val_r = gr.Slider(
|
228 |
+
label="Sketch guidance: ",
|
229 |
+
show_label=True,
|
230 |
+
minimum=0,
|
231 |
+
maximum=1,
|
232 |
+
value=0.4,
|
233 |
+
step=0.01,
|
234 |
+
scale=4,
|
235 |
+
visible=False,
|
236 |
+
)
|
237 |
+
seed = gr.Textbox(label="Seed", value=42, scale=4, visible=False)
|
238 |
+
|
239 |
+
with gr.Column():
|
240 |
+
# gr.Markdown("## OUTPUT", elem_id="output_header")
|
241 |
+
result = gr.Image(
|
242 |
+
height=HEIGHT,
|
243 |
+
width=WIDTH,
|
244 |
+
elem_id="output_image",
|
245 |
+
type="pil",
|
246 |
+
show_label=False,
|
247 |
+
show_download_button=True,
|
248 |
+
interactive=False,
|
249 |
+
visible=False,
|
250 |
+
)
|
251 |
+
|
252 |
+
gr.Markdown("### Instructions")
|
253 |
+
gr.Markdown("1. Enter a text prompt (e.g. cat)")
|
254 |
+
gr.Markdown("2. Draw some sketches on the Sketchpad")
|
255 |
+
gr.Markdown("3. Click on **Run** to generate the skecthes powered by AI")
|
256 |
+
gr.Markdown(
|
257 |
+
"4. While you see the sketches coming out, click on **Stop** to stop more frames coming out"
|
258 |
+
)
|
259 |
+
gr.Markdown("5. Then you can select a frame by the Frame Selector")
|
260 |
+
gr.Markdown(
|
261 |
+
"6. You may then continue to draw more sketches or change the prompt and repeat the process"
|
262 |
+
)
|
263 |
+
gr.Markdown(
|
264 |
+
"7. You may try different random seeds by clicking on **Random**"
|
265 |
+
)
|
266 |
+
gr.Markdown(
|
267 |
+
"**Thanks to the [paper](https://arxiv.org/abs/2403.12036) and their open-sourced models!**"
|
268 |
+
)
|
269 |
+
frames = gr.State([])
|
270 |
+
sketches = gr.Image(
|
271 |
+
height=HEIGHT,
|
272 |
+
width=WIDTH,
|
273 |
+
show_label=False,
|
274 |
+
show_download_button=True,
|
275 |
+
type="pil",
|
276 |
+
visible=False,
|
277 |
+
)
|
278 |
+
one_frame = gr.Image(
|
279 |
+
height=HEIGHT,
|
280 |
+
width=WIDTH,
|
281 |
+
show_label=False,
|
282 |
+
show_download_button=True,
|
283 |
+
type="pil",
|
284 |
+
interactive=False,
|
285 |
+
visible=False,
|
286 |
+
)
|
287 |
+
|
288 |
+
inputs = [image, prompt, prompt_temp, style, seed, val_r]
|
289 |
+
outputs = [result]
|
290 |
+
|
291 |
+
randomize_seed_click = (
|
292 |
+
randomize_seed.click(
|
293 |
+
lambda: random.randint(0, MAX_SEED),
|
294 |
+
inputs=[],
|
295 |
+
outputs=seed,
|
296 |
+
)
|
297 |
+
.then(
|
298 |
+
fn=run,
|
299 |
+
inputs=inputs,
|
300 |
+
outputs=outputs,
|
301 |
+
)
|
302 |
+
.then(
|
303 |
+
image_to_sketch_gif,
|
304 |
+
inputs=[result],
|
305 |
+
outputs=[sketches, frames, frame_selector, apply_button],
|
306 |
+
)
|
307 |
+
.then(
|
308 |
+
iter_frames,
|
309 |
+
inputs=[frames],
|
310 |
+
outputs=[image],
|
311 |
+
)
|
312 |
+
)
|
313 |
+
|
314 |
+
prompt_submit = (
|
315 |
+
prompt.submit(fn=run, inputs=inputs, outputs=outputs)
|
316 |
+
.then(
|
317 |
+
image_to_sketch_gif,
|
318 |
+
inputs=[result],
|
319 |
+
outputs=[sketches, frames, frame_selector, apply_button],
|
320 |
+
)
|
321 |
+
.then(
|
322 |
+
iter_frames,
|
323 |
+
inputs=[frames],
|
324 |
+
outputs=[image],
|
325 |
+
)
|
326 |
+
)
|
327 |
+
|
328 |
+
style_change = (
|
329 |
+
style.change(lambda x: styles[x], inputs=[style], outputs=[prompt_temp])
|
330 |
+
.then(
|
331 |
+
fn=run,
|
332 |
+
inputs=inputs,
|
333 |
+
outputs=outputs,
|
334 |
+
)
|
335 |
+
.then(
|
336 |
+
image_to_sketch_gif,
|
337 |
+
inputs=[result],
|
338 |
+
outputs=[sketches, frames, frame_selector, apply_button],
|
339 |
+
)
|
340 |
+
.then(
|
341 |
+
iter_frames,
|
342 |
+
inputs=[frames],
|
343 |
+
outputs=[image],
|
344 |
+
)
|
345 |
+
)
|
346 |
+
|
347 |
+
val_r_change = (
|
348 |
+
val_r.change(run, inputs=inputs, outputs=outputs)
|
349 |
+
.then(
|
350 |
+
image_to_sketch_gif,
|
351 |
+
inputs=[result],
|
352 |
+
outputs=[sketches, frames, frame_selector, apply_button],
|
353 |
+
)
|
354 |
+
.then(
|
355 |
+
iter_frames,
|
356 |
+
inputs=[frames],
|
357 |
+
outputs=[image],
|
358 |
+
)
|
359 |
+
)
|
360 |
+
|
361 |
+
run_button_click = (
|
362 |
+
run_button.click(fn=run, inputs=inputs, outputs=outputs)
|
363 |
+
.then(
|
364 |
+
image_to_sketch_gif,
|
365 |
+
inputs=[result],
|
366 |
+
outputs=[sketches, frames, frame_selector, apply_button],
|
367 |
+
)
|
368 |
+
.then(
|
369 |
+
iter_frames,
|
370 |
+
inputs=[frames],
|
371 |
+
outputs=[image],
|
372 |
+
)
|
373 |
+
)
|
374 |
+
|
375 |
+
image_apply = (
|
376 |
+
image.apply(
|
377 |
+
run,
|
378 |
+
inputs=inputs,
|
379 |
+
outputs=outputs,
|
380 |
+
)
|
381 |
+
.then(
|
382 |
+
image_to_sketch_gif,
|
383 |
+
inputs=[result],
|
384 |
+
outputs=[sketches, frames, frame_selector, apply_button],
|
385 |
+
)
|
386 |
+
.then(
|
387 |
+
iter_frames,
|
388 |
+
inputs=[frames],
|
389 |
+
outputs=[image],
|
390 |
+
)
|
391 |
+
)
|
392 |
+
|
393 |
+
apply_button.click(
|
394 |
+
fn=None,
|
395 |
+
inputs=None,
|
396 |
+
outputs=None,
|
397 |
+
cancels=[
|
398 |
+
run_button_click,
|
399 |
+
randomize_seed_click,
|
400 |
+
prompt_submit,
|
401 |
+
style_change,
|
402 |
+
val_r_change,
|
403 |
+
image_apply,
|
404 |
+
],
|
405 |
+
)
|
406 |
+
apply_button.click(
|
407 |
+
fn=apply_func_click,
|
408 |
+
inputs=None,
|
409 |
+
outputs=[frame_selector],
|
410 |
+
)
|
411 |
+
|
412 |
+
frame_selector.change(
|
413 |
+
lambda x, y: y[x], inputs=[frame_selector, frames], outputs=[image]
|
414 |
+
)
|
415 |
+
|
416 |
+
image.clear(
|
417 |
+
fn=None,
|
418 |
+
inputs=None,
|
419 |
+
outputs=None,
|
420 |
+
cancels=[
|
421 |
+
run_button_click,
|
422 |
+
randomize_seed_click,
|
423 |
+
prompt_submit,
|
424 |
+
style_change,
|
425 |
+
val_r_change,
|
426 |
+
image_apply,
|
427 |
+
],
|
428 |
+
)
|
429 |
+
image.clear(
|
430 |
+
fn=clear_image_editor,
|
431 |
+
inputs=None,
|
432 |
+
outputs=[
|
433 |
+
image,
|
434 |
+
result,
|
435 |
+
sketches,
|
436 |
+
one_frame,
|
437 |
+
frames,
|
438 |
+
frame_selector,
|
439 |
+
apply_button,
|
440 |
+
],
|
441 |
+
)
|
442 |
+
|
443 |
+
if __name__ == "__main__":
|
444 |
+
demo.queue().launch(debug=True)
|
requirements.txt
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
clip @ git+https://github.com/openai/CLIP.git
|
2 |
+
einops>=0.6.1
|
3 |
+
numpy>=1.24.4
|
4 |
+
open-clip-torch>=2.20.0
|
5 |
+
opencv-python==4.6.0.66
|
6 |
+
pillow>=9.5.0
|
7 |
+
scipy==1.11.1
|
8 |
+
timm>=0.9.2
|
9 |
+
tokenizers
|
10 |
+
torch>=2.1.0
|
11 |
+
|
12 |
+
torchaudio>=2.0.2
|
13 |
+
torchdata
|
14 |
+
torchmetrics>=1.0.1
|
15 |
+
torchvision>=0.15.2
|
16 |
+
|
17 |
+
tqdm>=4.65.0
|
18 |
+
transformers==4.43.2
|
19 |
+
triton
|
20 |
+
urllib3<1.27,>=1.25.4
|
21 |
+
xformers>=0.0.20
|
22 |
+
accelerate
|
23 |
+
streamlit-keyup==0.2.0
|
24 |
+
lpips
|
25 |
+
clean-fid
|
26 |
+
peft
|
27 |
+
dominate
|
28 |
+
diffusers>=0.25.1
|
29 |
+
huggingface_hub>=0.26.0
|
30 |
+
hf_transfer
|
src/__pycache__/image_prep.cpython-310.pyc
ADDED
Binary file (544 Bytes). View file
|
|
src/__pycache__/img2skt.cpython-312.pyc
ADDED
Binary file (3.13 kB). View file
|
|
src/__pycache__/model.cpython-310.pyc
ADDED
Binary file (699 Bytes). View file
|
|
src/__pycache__/model.cpython-312.pyc
ADDED
Binary file (3.06 kB). View file
|
|
src/__pycache__/pix2pix_turbo.cpython-310.pyc
ADDED
Binary file (6.84 kB). View file
|
|
src/__pycache__/pix2pix_turbo.cpython-312.pyc
ADDED
Binary file (12.1 kB). View file
|
|
src/image_prep.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from PIL import Image
|
3 |
+
import cv2
|
4 |
+
|
5 |
+
|
6 |
+
def canny_from_pil(image, low_threshold=100, high_threshold=200):
|
7 |
+
image = np.array(image)
|
8 |
+
image = cv2.Canny(image, low_threshold, high_threshold)
|
9 |
+
image = image[:, :, None]
|
10 |
+
image = np.concatenate([image, image, image], axis=2)
|
11 |
+
control_image = Image.fromarray(image)
|
12 |
+
return control_image
|
src/img2skt.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import os
|
3 |
+
import tempfile
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import gradio as gr
|
7 |
+
import numpy as np
|
8 |
+
from PIL import Image, ImageSequence
|
9 |
+
|
10 |
+
|
11 |
+
def image_to_sketch_gif(input_image: Image.Image):
|
12 |
+
# Convert PIL image to OpenCV format
|
13 |
+
open_cv_image = np.array(input_image.convert("RGB"))
|
14 |
+
open_cv_image = cv2.cvtColor(open_cv_image, cv2.COLOR_RGB2BGR)
|
15 |
+
|
16 |
+
# Convert to grayscale
|
17 |
+
grayscale_image = cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2GRAY)
|
18 |
+
|
19 |
+
# Apply Gaussian blur
|
20 |
+
blurred_image = cv2.GaussianBlur(grayscale_image, (5, 5), 0)
|
21 |
+
|
22 |
+
# Use Canny Edge Detection
|
23 |
+
edges = cv2.Canny(blurred_image, threshold1=50, threshold2=150)
|
24 |
+
|
25 |
+
# Ensure binary format
|
26 |
+
_, binary_sketch = cv2.threshold(edges, 128, 255, cv2.THRESH_BINARY)
|
27 |
+
|
28 |
+
# Find connected components
|
29 |
+
num_labels, labels, stats, _ = cv2.connectedComponentsWithStats(
|
30 |
+
binary_sketch, connectivity=8
|
31 |
+
)
|
32 |
+
|
33 |
+
# Sort components by size (excluding the background, which is label 0)
|
34 |
+
components = sorted(
|
35 |
+
[(i, stats[i, cv2.CC_STAT_AREA]) for i in range(1, num_labels)],
|
36 |
+
key=lambda x: x[1],
|
37 |
+
reverse=True,
|
38 |
+
)
|
39 |
+
|
40 |
+
# Initialize an empty canvas for accumulation
|
41 |
+
accumulated_image = np.zeros_like(binary_sketch, dtype=np.uint8)
|
42 |
+
|
43 |
+
# Store frames
|
44 |
+
frames = []
|
45 |
+
|
46 |
+
for label, _ in components:
|
47 |
+
# Add the current component to the accumulation
|
48 |
+
accumulated_image[labels == label] = 255
|
49 |
+
|
50 |
+
# Convert OpenCV image to PIL image and append to frames
|
51 |
+
pil_frame = Image.fromarray(255 - accumulated_image)
|
52 |
+
frames.append(pil_frame.copy())
|
53 |
+
|
54 |
+
# Add the input_input as the final frame
|
55 |
+
frames.append(input_image.copy())
|
56 |
+
|
57 |
+
# Save GIF to a temporary file
|
58 |
+
tmp_dir = tempfile.gettempdir() # Get system temp directory
|
59 |
+
tmp_gif_path = os.path.join(tmp_dir, "sketch_animation.gif")
|
60 |
+
frames[0].save(
|
61 |
+
tmp_gif_path,
|
62 |
+
format="GIF",
|
63 |
+
save_all=True,
|
64 |
+
append_images=frames[1:],
|
65 |
+
duration=100,
|
66 |
+
loop=0,
|
67 |
+
)
|
68 |
+
|
69 |
+
return (
|
70 |
+
tmp_gif_path,
|
71 |
+
frames,
|
72 |
+
gr.Slider(
|
73 |
+
minimum=0,
|
74 |
+
maximum=len(frames) - 1,
|
75 |
+
value=0,
|
76 |
+
step=1,
|
77 |
+
visible=False,
|
78 |
+
scale=4,
|
79 |
+
label="Frame Selector",
|
80 |
+
interactive=True,
|
81 |
+
),
|
82 |
+
gr.Button("Stop", scale=1, visible=True),
|
83 |
+
)
|
src/model.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, sys, pdb
|
2 |
+
|
3 |
+
import diffusers
|
4 |
+
from transformers import AutoTokenizer, PretrainedConfig
|
5 |
+
from diffusers import AutoencoderKL, UNet2DConditionModel, DDPMScheduler
|
6 |
+
|
7 |
+
|
8 |
+
def make_1step_sched():
|
9 |
+
noise_scheduler = DDPMScheduler.from_pretrained(
|
10 |
+
"stabilityai/sd-turbo", subfolder="scheduler"
|
11 |
+
)
|
12 |
+
noise_scheduler_1step = DDPMScheduler.from_pretrained(
|
13 |
+
"stabilityai/sd-turbo", subfolder="scheduler"
|
14 |
+
)
|
15 |
+
noise_scheduler_1step.set_timesteps(1, device="cuda")
|
16 |
+
noise_scheduler_1step.alphas_cumprod = noise_scheduler_1step.alphas_cumprod.cuda()
|
17 |
+
return noise_scheduler_1step
|
18 |
+
|
19 |
+
|
20 |
+
"""The forward method of the `Encoder` class."""
|
21 |
+
|
22 |
+
|
23 |
+
def my_vae_encoder_fwd(self, sample):
|
24 |
+
sample = self.conv_in(sample)
|
25 |
+
l_blocks = []
|
26 |
+
# down
|
27 |
+
for down_block in self.down_blocks:
|
28 |
+
l_blocks.append(sample)
|
29 |
+
sample = down_block(sample)
|
30 |
+
# middle
|
31 |
+
sample = self.mid_block(sample)
|
32 |
+
sample = self.conv_norm_out(sample)
|
33 |
+
sample = self.conv_act(sample)
|
34 |
+
sample = self.conv_out(sample)
|
35 |
+
self.current_down_blocks = l_blocks
|
36 |
+
return sample
|
37 |
+
|
38 |
+
|
39 |
+
"""The forward method of the `Decoder` class."""
|
40 |
+
|
41 |
+
|
42 |
+
def my_vae_decoder_fwd(self, sample, latent_embeds=None):
|
43 |
+
sample = self.conv_in(sample)
|
44 |
+
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
|
45 |
+
# middle
|
46 |
+
sample = self.mid_block(sample, latent_embeds)
|
47 |
+
sample = sample.to(upscale_dtype)
|
48 |
+
if not self.ignore_skip:
|
49 |
+
skip_convs = [
|
50 |
+
self.skip_conv_1,
|
51 |
+
self.skip_conv_2,
|
52 |
+
self.skip_conv_3,
|
53 |
+
self.skip_conv_4,
|
54 |
+
]
|
55 |
+
# up
|
56 |
+
for idx, up_block in enumerate(self.up_blocks):
|
57 |
+
skip_in = skip_convs[idx](self.incoming_skip_acts[::-1][idx] * self.gamma)
|
58 |
+
# add skip
|
59 |
+
sample = sample + skip_in
|
60 |
+
sample = up_block(sample, latent_embeds)
|
61 |
+
else:
|
62 |
+
for idx, up_block in enumerate(self.up_blocks):
|
63 |
+
sample = up_block(sample, latent_embeds)
|
64 |
+
# post-process
|
65 |
+
if latent_embeds is None:
|
66 |
+
sample = self.conv_norm_out(sample)
|
67 |
+
else:
|
68 |
+
sample = self.conv_norm_out(sample, latent_embeds)
|
69 |
+
sample = self.conv_act(sample)
|
70 |
+
sample = self.conv_out(sample)
|
71 |
+
return sample
|
src/pix2pix_turbo.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import os
|
3 |
+
import requests
|
4 |
+
import sys
|
5 |
+
import pdb
|
6 |
+
import copy
|
7 |
+
from tqdm import tqdm
|
8 |
+
import torch
|
9 |
+
from transformers import AutoTokenizer, PretrainedConfig, CLIPTextModel
|
10 |
+
from diffusers import AutoencoderKL, UNet2DConditionModel, DDPMScheduler
|
11 |
+
from diffusers.utils.peft_utils import set_weights_and_activate_adapters
|
12 |
+
from peft import LoraConfig
|
13 |
+
|
14 |
+
p = "src/"
|
15 |
+
sys.path.append(p)
|
16 |
+
from model import make_1step_sched, my_vae_encoder_fwd, my_vae_decoder_fwd
|
17 |
+
|
18 |
+
|
19 |
+
class TwinConv(torch.nn.Module):
|
20 |
+
def __init__(self, convin_pretrained, convin_curr):
|
21 |
+
super(TwinConv, self).__init__()
|
22 |
+
self.conv_in_pretrained = copy.deepcopy(convin_pretrained)
|
23 |
+
self.conv_in_curr = copy.deepcopy(convin_curr)
|
24 |
+
self.r = None
|
25 |
+
|
26 |
+
def forward(self, x):
|
27 |
+
x1 = self.conv_in_pretrained(x).detach()
|
28 |
+
x2 = self.conv_in_curr(x)
|
29 |
+
return x1 * (1 - self.r) + x2 * (self.r)
|
30 |
+
|
31 |
+
|
32 |
+
class Pix2Pix_Turbo(torch.nn.Module):
|
33 |
+
def __init__(self, name, ckpt_folder="checkpoints"):
|
34 |
+
super().__init__()
|
35 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
36 |
+
"stabilityai/sd-turbo", subfolder="tokenizer"
|
37 |
+
)
|
38 |
+
self.text_encoder = CLIPTextModel.from_pretrained(
|
39 |
+
"stabilityai/sd-turbo", subfolder="text_encoder"
|
40 |
+
).cuda()
|
41 |
+
self.sched = make_1step_sched()
|
42 |
+
|
43 |
+
vae = AutoencoderKL.from_pretrained("stabilityai/sd-turbo", subfolder="vae")
|
44 |
+
unet = UNet2DConditionModel.from_pretrained(
|
45 |
+
"stabilityai/sd-turbo", subfolder="unet"
|
46 |
+
)
|
47 |
+
|
48 |
+
if name == "edge_to_image":
|
49 |
+
url = "https://www.cs.cmu.edu/~img2img-turbo/models/edge_to_image_loras.pkl"
|
50 |
+
os.makedirs(ckpt_folder, exist_ok=True)
|
51 |
+
outf = os.path.join(ckpt_folder, "edge_to_image_loras.pkl")
|
52 |
+
if not os.path.exists(outf):
|
53 |
+
print(f"Downloading checkpoint to {outf}")
|
54 |
+
response = requests.get(url, stream=True)
|
55 |
+
total_size_in_bytes = int(response.headers.get("content-length", 0))
|
56 |
+
block_size = 1024 # 1 Kibibyte
|
57 |
+
progress_bar = tqdm(
|
58 |
+
total=total_size_in_bytes, unit="iB", unit_scale=True
|
59 |
+
)
|
60 |
+
with open(outf, "wb") as file:
|
61 |
+
for data in response.iter_content(block_size):
|
62 |
+
progress_bar.update(len(data))
|
63 |
+
file.write(data)
|
64 |
+
progress_bar.close()
|
65 |
+
if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes:
|
66 |
+
print("ERROR, something went wrong")
|
67 |
+
print(f"Downloaded successfully to {outf}")
|
68 |
+
p_ckpt = outf
|
69 |
+
sd = torch.load(p_ckpt, map_location="cpu")
|
70 |
+
unet_lora_config = LoraConfig(
|
71 |
+
r=sd["rank_unet"],
|
72 |
+
init_lora_weights="gaussian",
|
73 |
+
target_modules=sd["unet_lora_target_modules"],
|
74 |
+
)
|
75 |
+
|
76 |
+
if name == "sketch_to_image_stochastic":
|
77 |
+
# download from url
|
78 |
+
url = "https://www.cs.cmu.edu/~img2img-turbo/models/sketch_to_image_stochastic_lora.pkl"
|
79 |
+
os.makedirs(ckpt_folder, exist_ok=True)
|
80 |
+
outf = os.path.join(ckpt_folder, "sketch_to_image_stochastic_lora.pkl")
|
81 |
+
if not os.path.exists(outf):
|
82 |
+
print(f"Downloading checkpoint to {outf}")
|
83 |
+
response = requests.get(url, stream=True)
|
84 |
+
total_size_in_bytes = int(response.headers.get("content-length", 0))
|
85 |
+
block_size = 1024 # 1 Kibibyte
|
86 |
+
progress_bar = tqdm(
|
87 |
+
total=total_size_in_bytes, unit="iB", unit_scale=True
|
88 |
+
)
|
89 |
+
with open(outf, "wb") as file:
|
90 |
+
for data in response.iter_content(block_size):
|
91 |
+
progress_bar.update(len(data))
|
92 |
+
file.write(data)
|
93 |
+
progress_bar.close()
|
94 |
+
if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes:
|
95 |
+
print("ERROR, something went wrong")
|
96 |
+
print(f"Downloaded successfully to {outf}")
|
97 |
+
p_ckpt = outf
|
98 |
+
sd = torch.load(p_ckpt, map_location="cpu")
|
99 |
+
unet_lora_config = LoraConfig(
|
100 |
+
r=sd["rank_unet"],
|
101 |
+
init_lora_weights="gaussian",
|
102 |
+
target_modules=sd["unet_lora_target_modules"],
|
103 |
+
)
|
104 |
+
convin_pretrained = copy.deepcopy(unet.conv_in)
|
105 |
+
unet.conv_in = TwinConv(convin_pretrained, unet.conv_in)
|
106 |
+
|
107 |
+
vae.encoder.forward = my_vae_encoder_fwd.__get__(
|
108 |
+
vae.encoder, vae.encoder.__class__
|
109 |
+
)
|
110 |
+
vae.decoder.forward = my_vae_decoder_fwd.__get__(
|
111 |
+
vae.decoder, vae.decoder.__class__
|
112 |
+
)
|
113 |
+
# add the skip connection convs
|
114 |
+
vae.decoder.skip_conv_1 = torch.nn.Conv2d(
|
115 |
+
512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
116 |
+
).cuda()
|
117 |
+
vae.decoder.skip_conv_2 = torch.nn.Conv2d(
|
118 |
+
256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
119 |
+
).cuda()
|
120 |
+
vae.decoder.skip_conv_3 = torch.nn.Conv2d(
|
121 |
+
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
122 |
+
).cuda()
|
123 |
+
vae.decoder.skip_conv_4 = torch.nn.Conv2d(
|
124 |
+
128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
125 |
+
).cuda()
|
126 |
+
vae_lora_config = LoraConfig(
|
127 |
+
r=sd["rank_vae"],
|
128 |
+
init_lora_weights="gaussian",
|
129 |
+
target_modules=sd["vae_lora_target_modules"],
|
130 |
+
)
|
131 |
+
vae.decoder.ignore_skip = False
|
132 |
+
vae.add_adapter(vae_lora_config, adapter_name="vae_skip")
|
133 |
+
unet.add_adapter(unet_lora_config)
|
134 |
+
_sd_unet = unet.state_dict()
|
135 |
+
for k in sd["state_dict_unet"]:
|
136 |
+
_sd_unet[k] = sd["state_dict_unet"][k]
|
137 |
+
unet.load_state_dict(_sd_unet)
|
138 |
+
|
139 |
+
@spaces.GPU()
|
140 |
+
def wrapper(unet):
|
141 |
+
unet.enable_xformers_memory_efficient_attention()
|
142 |
+
return unet
|
143 |
+
|
144 |
+
unet = wrapper(unet)
|
145 |
+
_sd_vae = vae.state_dict()
|
146 |
+
for k in sd["state_dict_vae"]:
|
147 |
+
_sd_vae[k] = sd["state_dict_vae"][k]
|
148 |
+
vae.load_state_dict(_sd_vae)
|
149 |
+
unet.to("cuda")
|
150 |
+
vae.to("cuda")
|
151 |
+
unet.eval()
|
152 |
+
vae.eval()
|
153 |
+
self.unet, self.vae = unet, vae
|
154 |
+
self.vae.decoder.gamma = 1
|
155 |
+
self.timesteps = torch.tensor([999], device="cuda").long()
|
156 |
+
|
157 |
+
def forward(self, c_t, prompt, deterministic=True, r=1.0, noise_map=None):
|
158 |
+
# encode the text prompt
|
159 |
+
caption_tokens = self.tokenizer(
|
160 |
+
prompt,
|
161 |
+
max_length=self.tokenizer.model_max_length,
|
162 |
+
padding="max_length",
|
163 |
+
truncation=True,
|
164 |
+
return_tensors="pt",
|
165 |
+
).input_ids.cuda()
|
166 |
+
caption_enc = self.text_encoder(caption_tokens)[0]
|
167 |
+
if deterministic:
|
168 |
+
encoded_control = (
|
169 |
+
self.vae.encode(c_t).latent_dist.sample()
|
170 |
+
* self.vae.config.scaling_factor
|
171 |
+
)
|
172 |
+
model_pred = self.unet(
|
173 |
+
encoded_control,
|
174 |
+
self.timesteps,
|
175 |
+
encoder_hidden_states=caption_enc,
|
176 |
+
).sample
|
177 |
+
x_denoised = self.sched.step(
|
178 |
+
model_pred, self.timesteps, encoded_control, return_dict=True
|
179 |
+
).prev_sample
|
180 |
+
self.vae.decoder.incoming_skip_acts = self.vae.encoder.current_down_blocks
|
181 |
+
output_image = (
|
182 |
+
self.vae.decode(x_denoised / self.vae.config.scaling_factor).sample
|
183 |
+
).clamp(-1, 1)
|
184 |
+
else:
|
185 |
+
# scale the lora weights based on the r value
|
186 |
+
self.unet.set_adapters(["default"], weights=[r])
|
187 |
+
set_weights_and_activate_adapters(self.vae, ["vae_skip"], [r])
|
188 |
+
encoded_control = (
|
189 |
+
self.vae.encode(c_t).latent_dist.sample()
|
190 |
+
* self.vae.config.scaling_factor
|
191 |
+
)
|
192 |
+
# combine the input and noise
|
193 |
+
unet_input = encoded_control * r + noise_map * (1 - r)
|
194 |
+
self.unet.conv_in.r = r
|
195 |
+
unet_output = self.unet(
|
196 |
+
unet_input,
|
197 |
+
self.timesteps,
|
198 |
+
encoder_hidden_states=caption_enc,
|
199 |
+
).sample
|
200 |
+
self.unet.conv_in.r = None
|
201 |
+
x_denoised = self.sched.step(
|
202 |
+
unet_output, self.timesteps, unet_input, return_dict=True
|
203 |
+
).prev_sample
|
204 |
+
self.vae.decoder.incoming_skip_acts = self.vae.encoder.current_down_blocks
|
205 |
+
self.vae.decoder.gamma = r
|
206 |
+
output_image = (
|
207 |
+
self.vae.decode(x_denoised / self.vae.config.scaling_factor).sample
|
208 |
+
).clamp(-1, 1)
|
209 |
+
return output_image
|