|
import numpy as np |
|
from PIL import Image |
|
from huggingface_hub import snapshot_download |
|
from leffa.transform import LeffaTransform |
|
from leffa.model import LeffaModel |
|
from leffa.inference import LeffaInference |
|
from leffa_utils.garment_agnostic_mask_predictor import AutoMasker |
|
from leffa_utils.densepose_predictor import DensePosePredictor |
|
from leffa_utils.utils import resize_and_center, list_dir, get_agnostic_mask_hd, get_agnostic_mask_dc |
|
from preprocess.humanparsing.run_parsing import Parsing |
|
from preprocess.openpose.run_openpose import OpenPose |
|
|
|
import gradio as gr |
|
|
|
|
|
snapshot_download(repo_id="franciszzj/Leffa", local_dir="./ckpts") |
|
|
|
|
|
class LeffaPredictor(object): |
|
def __init__(self): |
|
self.mask_predictor = AutoMasker( |
|
densepose_path="./ckpts/densepose", |
|
schp_path="./ckpts/schp", |
|
) |
|
|
|
self.densepose_predictor = DensePosePredictor( |
|
config_path="./ckpts/densepose/densepose_rcnn_R_50_FPN_s1x.yaml", |
|
weights_path="./ckpts/densepose/model_final_162be9.pkl", |
|
) |
|
|
|
self.parsing = Parsing( |
|
atr_path="./ckpts/humanparsing/parsing_atr.onnx", |
|
lip_path="./ckpts/humanparsing/parsing_lip.onnx", |
|
) |
|
|
|
self.openpose = OpenPose( |
|
body_model_path="./ckpts/openpose/body_pose_model.pth", |
|
) |
|
|
|
vt_model_hd = LeffaModel( |
|
pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting", |
|
pretrained_model="./ckpts/virtual_tryon.pth", |
|
dtype="float16", |
|
) |
|
self.vt_inference_hd = LeffaInference(model=vt_model_hd) |
|
|
|
vt_model_dc = LeffaModel( |
|
pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting", |
|
pretrained_model="./ckpts/virtual_tryon_dc.pth", |
|
dtype="float16", |
|
) |
|
self.vt_inference_dc = LeffaInference(model=vt_model_dc) |
|
|
|
pt_model = LeffaModel( |
|
pretrained_model_name_or_path="./ckpts/stable-diffusion-xl-1.0-inpainting-0.1", |
|
pretrained_model="./ckpts/pose_transfer.pth", |
|
dtype="float16", |
|
) |
|
self.pt_inference = LeffaInference(model=pt_model) |
|
|
|
def leffa_predict( |
|
self, |
|
src_image_path, |
|
ref_image_path, |
|
control_type, |
|
ref_acceleration=False, |
|
step=50, |
|
scale=2.5, |
|
seed=42, |
|
vt_model_type="viton_hd", |
|
vt_garment_type="upper_body", |
|
vt_repaint=False |
|
): |
|
assert control_type in [ |
|
"virtual_tryon", "pose_transfer"], "Invalid control type: {}".format(control_type) |
|
src_image = Image.open(src_image_path) |
|
ref_image = Image.open(ref_image_path) |
|
src_image = resize_and_center(src_image, 768, 1024) |
|
ref_image = resize_and_center(ref_image, 768, 1024) |
|
|
|
src_image_array = np.array(src_image) |
|
|
|
|
|
if control_type == "virtual_tryon": |
|
src_image = src_image.convert("RGB") |
|
model_parse, _ = self.parsing(src_image.resize((384, 512))) |
|
keypoints = self.openpose(src_image.resize((384, 512))) |
|
if vt_model_type == "viton_hd": |
|
mask = get_agnostic_mask_hd( |
|
model_parse, keypoints, vt_garment_type) |
|
elif vt_model_type == "dress_code": |
|
mask = get_agnostic_mask_dc( |
|
model_parse, keypoints, vt_garment_type) |
|
mask = mask.resize((768, 1024)) |
|
|
|
|
|
|
|
elif control_type == "pose_transfer": |
|
mask = Image.fromarray(np.ones_like(src_image_array) * 255) |
|
|
|
|
|
if control_type == "virtual_tryon": |
|
if vt_model_type == "viton_hd": |
|
src_image_seg_array = self.densepose_predictor.predict_seg( |
|
src_image_array)[:, :, ::-1] |
|
src_image_seg = Image.fromarray(src_image_seg_array) |
|
densepose = src_image_seg |
|
elif vt_model_type == "dress_code": |
|
src_image_iuv_array = self.densepose_predictor.predict_iuv( |
|
src_image_array) |
|
src_image_seg_array = src_image_iuv_array[:, :, 0:1] |
|
src_image_seg_array = np.concatenate( |
|
[src_image_seg_array] * 3, axis=-1) |
|
src_image_seg = Image.fromarray(src_image_seg_array) |
|
densepose = src_image_seg |
|
elif control_type == "pose_transfer": |
|
src_image_iuv_array = self.densepose_predictor.predict_iuv( |
|
src_image_array)[:, :, ::-1] |
|
src_image_iuv = Image.fromarray(src_image_iuv_array) |
|
densepose = src_image_iuv |
|
|
|
|
|
transform = LeffaTransform() |
|
|
|
data = { |
|
"src_image": [src_image], |
|
"ref_image": [ref_image], |
|
"mask": [mask], |
|
"densepose": [densepose], |
|
} |
|
data = transform(data) |
|
if control_type == "virtual_tryon": |
|
if vt_model_type == "viton_hd": |
|
inference = self.vt_inference_hd |
|
elif vt_model_type == "dress_code": |
|
inference = self.vt_inference_dc |
|
elif control_type == "pose_transfer": |
|
inference = self.pt_inference |
|
output = inference( |
|
data, |
|
ref_acceleration=ref_acceleration, |
|
num_inference_steps=step, |
|
guidance_scale=scale, |
|
seed=seed, |
|
repaint=vt_repaint,) |
|
gen_image = output["generated_image"][0] |
|
|
|
return np.array(gen_image), np.array(mask), np.array(densepose) |
|
|
|
def leffa_predict_vt(self, src_image_path, ref_image_path, ref_acceleration, step, scale, seed, vt_model_type, vt_garment_type, vt_repaint): |
|
return self.leffa_predict(src_image_path, ref_image_path, "virtual_tryon", ref_acceleration, step, scale, seed, vt_model_type, vt_garment_type, vt_repaint) |
|
|
|
def leffa_predict_pt(self, src_image_path, ref_image_path, ref_acceleration, step, scale, seed): |
|
return self.leffa_predict(src_image_path, ref_image_path, "pose_transfer", ref_acceleration, step, scale, seed) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
leffa_predictor = LeffaPredictor() |
|
example_dir = "./ckpts/examples" |
|
person1_images = list_dir(f"{example_dir}/person1") |
|
person2_images = list_dir(f"{example_dir}/person2") |
|
garment_images = list_dir(f"{example_dir}/garment") |
|
|
|
title = "## Leffa: Learning Flow Fields in Attention for Controllable Person Image Generation" |
|
link = """[π Paper](https://arxiv.org/abs/2412.08486) - [π€ Code](https://github.com/franciszzj/Leffa) - [π₯ Demo](https://huggingface.co/spaces/franciszzj/Leffa) - [π€ Model](https://huggingface.co/franciszzj/Leffa) |
|
|
|
Star β us if you like it! |
|
""" |
|
news = """## News |
|
- 09/Jan/2025. Inference defaults to float16, generating an image in 6 seconds (on A100). |
|
|
|
More news can be found in the [GitHub repository](https://github.com/franciszzj/Leffa). |
|
""" |
|
description = "Leffa is a unified framework for controllable person image generation that enables precise manipulation of both appearance (i.e., virtual try-on) and pose (i.e., pose transfer)." |
|
note = "Note: The models used in the demo are trained solely on academic datasets. Virtual try-on uses VITON-HD/DressCode, and pose transfer uses DeepFashion." |
|
|
|
with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.pink, secondary_hue=gr.themes.colors.red)).queue() as demo: |
|
gr.Markdown(title) |
|
gr.Markdown(link) |
|
gr.Markdown(news) |
|
gr.Markdown(description) |
|
|
|
with gr.Tab("Control Appearance (Virtual Try-on)"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown("#### Person Image") |
|
vt_src_image = gr.Image( |
|
sources=["upload"], |
|
type="filepath", |
|
label="Person Image", |
|
width=512, |
|
height=512, |
|
) |
|
|
|
gr.Examples( |
|
inputs=vt_src_image, |
|
examples_per_page=10, |
|
examples=person1_images, |
|
) |
|
|
|
with gr.Column(): |
|
gr.Markdown("#### Garment Image") |
|
vt_ref_image = gr.Image( |
|
sources=["upload"], |
|
type="filepath", |
|
label="Garment Image", |
|
width=512, |
|
height=512, |
|
) |
|
|
|
gr.Examples( |
|
inputs=vt_ref_image, |
|
examples_per_page=10, |
|
examples=garment_images, |
|
) |
|
|
|
with gr.Column(): |
|
gr.Markdown("#### Generated Image") |
|
vt_gen_image = gr.Image( |
|
label="Generated Image", |
|
width=512, |
|
height=512, |
|
) |
|
|
|
with gr.Row(): |
|
vt_gen_button = gr.Button("Generate") |
|
|
|
with gr.Accordion("Advanced Options", open=False): |
|
vt_model_type = gr.Radio( |
|
label="Model Type", |
|
choices=[("VITON-HD (Recommended)", "viton_hd"), |
|
("DressCode (Experimental)", "dress_code")], |
|
value="viton_hd", |
|
) |
|
|
|
vt_garment_type = gr.Radio( |
|
label="Garment Type", |
|
choices=[("Upper", "upper_body"), |
|
("Lower", "lower_body"), |
|
("Dress", "dresses")], |
|
value="upper_body", |
|
) |
|
|
|
vt_ref_acceleration = gr.Radio( |
|
label="Accelerate Reference UNet (may slightly reduce performance)", |
|
choices=[("True", True), ("False", False)], |
|
value=False, |
|
) |
|
|
|
vt_repaint = gr.Radio( |
|
label="Repaint Mode", |
|
choices=[("True", True), ("False", False)], |
|
value=False, |
|
) |
|
|
|
vt_step = gr.Number( |
|
label="Inference Steps", minimum=30, maximum=100, step=1, value=30) |
|
|
|
vt_scale = gr.Number( |
|
label="Guidance Scale", minimum=0.1, maximum=5.0, step=0.1, value=2.5) |
|
|
|
vt_seed = gr.Number( |
|
label="Random Seed", minimum=-1, maximum=2147483647, step=1, value=42) |
|
|
|
with gr.Accordion("Debug", open=False): |
|
vt_mask = gr.Image( |
|
label="Generated Mask", |
|
width=256, |
|
height=256, |
|
) |
|
|
|
vt_densepose = gr.Image( |
|
label="Generated DensePose", |
|
width=256, |
|
height=256, |
|
) |
|
|
|
vt_gen_button.click(fn=leffa_predictor.leffa_predict_vt, inputs=[ |
|
vt_src_image, vt_ref_image, vt_ref_acceleration, vt_step, vt_scale, vt_seed, vt_model_type, vt_garment_type, vt_repaint], outputs=[vt_gen_image, vt_mask, vt_densepose]) |
|
|
|
with gr.Tab("Control Pose (Pose Transfer)"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown("#### Person Image") |
|
pt_ref_image = gr.Image( |
|
sources=["upload"], |
|
type="filepath", |
|
label="Person Image", |
|
width=512, |
|
height=512, |
|
) |
|
|
|
gr.Examples( |
|
inputs=pt_ref_image, |
|
examples_per_page=10, |
|
examples=person1_images, |
|
) |
|
|
|
with gr.Column(): |
|
gr.Markdown("#### Target Pose Person Image") |
|
pt_src_image = gr.Image( |
|
sources=["upload"], |
|
type="filepath", |
|
label="Target Pose Person Image", |
|
width=512, |
|
height=512, |
|
) |
|
|
|
gr.Examples( |
|
inputs=pt_src_image, |
|
examples_per_page=10, |
|
examples=person2_images, |
|
) |
|
|
|
with gr.Column(): |
|
gr.Markdown("#### Generated Image") |
|
pt_gen_image = gr.Image( |
|
label="Generated Image", |
|
width=512, |
|
height=512, |
|
) |
|
|
|
with gr.Row(): |
|
pose_transfer_gen_button = gr.Button("Generate") |
|
|
|
with gr.Accordion("Advanced Options", open=False): |
|
pt_ref_acceleration = gr.Radio( |
|
label="Accelerate Reference UNet", |
|
choices=[("True", True), ("False", False)], |
|
value=False, |
|
) |
|
|
|
pt_step = gr.Number( |
|
label="Inference Steps", minimum=30, maximum=100, step=1, value=30) |
|
|
|
pt_scale = gr.Number( |
|
label="Guidance Scale", minimum=0.1, maximum=5.0, step=0.1, value=2.5) |
|
|
|
pt_seed = gr.Number( |
|
label="Random Seed", minimum=-1, maximum=2147483647, step=1, value=42) |
|
|
|
with gr.Accordion("Debug", open=False): |
|
pt_mask = gr.Image( |
|
label="Generated Mask", |
|
width=256, |
|
height=256, |
|
) |
|
|
|
pt_densepose = gr.Image( |
|
label="Generated DensePose", |
|
width=256, |
|
height=256, |
|
) |
|
|
|
pose_transfer_gen_button.click(fn=leffa_predictor.leffa_predict_pt, inputs=[ |
|
pt_src_image, pt_ref_image, pt_ref_acceleration, pt_step, pt_scale, pt_seed], outputs=[pt_gen_image, pt_mask, pt_densepose]) |
|
|
|
gr.Markdown(note) |
|
|
|
demo.launch(share=True, server_port=7860, |
|
allowed_paths=["./ckpts/examples"]) |
|
|