Spaces:
Paused
Paused
# | |
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
from api.db.services.user_service import TenantService | |
from api.settings import database_logger | |
from rag.llm import EmbeddingModel, CvModel, ChatModel, RerankModel, Seq2txtModel | |
from api.db import LLMType | |
from api.db.db_models import DB, UserTenant | |
from api.db.db_models import LLMFactories, LLM, TenantLLM | |
from api.db.services.common_service import CommonService | |
class LLMFactoriesService(CommonService): | |
model = LLMFactories | |
class LLMService(CommonService): | |
model = LLM | |
class TenantLLMService(CommonService): | |
model = TenantLLM | |
def get_api_key(cls, tenant_id, model_name): | |
objs = cls.query(tenant_id=tenant_id, llm_name=model_name) | |
if not objs: | |
return | |
return objs[0] | |
def get_my_llms(cls, tenant_id): | |
fields = [ | |
cls.model.llm_factory, | |
LLMFactories.logo, | |
LLMFactories.tags, | |
cls.model.model_type, | |
cls.model.llm_name, | |
cls.model.used_tokens | |
] | |
objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where( | |
cls.model.tenant_id == tenant_id, ~cls.model.api_key.is_null()).dicts() | |
return list(objs) | |
def model_instance(cls, tenant_id, llm_type, | |
llm_name=None, lang="Chinese"): | |
e, tenant = TenantService.get_by_id(tenant_id) | |
if not e: | |
raise LookupError("Tenant not found") | |
if llm_type == LLMType.EMBEDDING.value: | |
mdlnm = tenant.embd_id if not llm_name else llm_name | |
elif llm_type == LLMType.SPEECH2TEXT.value: | |
mdlnm = tenant.asr_id | |
elif llm_type == LLMType.IMAGE2TEXT.value: | |
mdlnm = tenant.img2txt_id if not llm_name else llm_name | |
elif llm_type == LLMType.CHAT.value: | |
mdlnm = tenant.llm_id if not llm_name else llm_name | |
elif llm_type == LLMType.RERANK: | |
mdlnm = tenant.rerank_id if not llm_name else llm_name | |
else: | |
assert False, "LLM type error" | |
model_config = cls.get_api_key(tenant_id, mdlnm) | |
if model_config: model_config = model_config.to_dict() | |
if not model_config: | |
if llm_type in [LLMType.EMBEDDING, LLMType.RERANK]: | |
llm = LLMService.query(llm_name=llm_name if llm_name else mdlnm) | |
if llm and llm[0].fid in ["Youdao", "FastEmbed", "BAAI"]: | |
model_config = {"llm_factory": llm[0].fid, "api_key":"", "llm_name": llm_name if llm_name else mdlnm, "api_base": ""} | |
if not model_config: | |
if llm_name == "flag-embedding": | |
model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "", | |
"llm_name": llm_name, "api_base": ""} | |
else: | |
if not mdlnm: | |
raise LookupError(f"Type of {llm_type} model is not set.") | |
raise LookupError("Model({}) not authorized".format(mdlnm)) | |
if llm_type == LLMType.EMBEDDING.value: | |
if model_config["llm_factory"] not in EmbeddingModel: | |
return | |
return EmbeddingModel[model_config["llm_factory"]]( | |
model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"]) | |
if llm_type == LLMType.RERANK: | |
if model_config["llm_factory"] not in RerankModel: | |
return | |
return RerankModel[model_config["llm_factory"]]( | |
model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"]) | |
if llm_type == LLMType.IMAGE2TEXT.value: | |
if model_config["llm_factory"] not in CvModel: | |
return | |
return CvModel[model_config["llm_factory"]]( | |
model_config["api_key"], model_config["llm_name"], lang, | |
base_url=model_config["api_base"] | |
) | |
if llm_type == LLMType.CHAT.value: | |
if model_config["llm_factory"] not in ChatModel: | |
return | |
return ChatModel[model_config["llm_factory"]]( | |
model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"]) | |
if llm_type == LLMType.SPEECH2TEXT: | |
if model_config["llm_factory"] not in Seq2txtModel: | |
return | |
return Seq2txtModel[model_config["llm_factory"]]( | |
model_config["api_key"], model_config["llm_name"], lang, | |
base_url=model_config["api_base"] | |
) | |
def increase_usage(cls, tenant_id, llm_type, used_tokens, llm_name=None): | |
e, tenant = TenantService.get_by_id(tenant_id) | |
if not e: | |
raise LookupError("Tenant not found") | |
if llm_type == LLMType.EMBEDDING.value: | |
mdlnm = tenant.embd_id | |
elif llm_type == LLMType.SPEECH2TEXT.value: | |
mdlnm = tenant.asr_id | |
elif llm_type == LLMType.IMAGE2TEXT.value: | |
mdlnm = tenant.img2txt_id | |
elif llm_type == LLMType.CHAT.value: | |
mdlnm = tenant.llm_id if not llm_name else llm_name | |
elif llm_type == LLMType.RERANK: | |
mdlnm = tenant.llm_id if not llm_name else llm_name | |
else: | |
assert False, "LLM type error" | |
num = 0 | |
try: | |
for u in cls.query(tenant_id = tenant_id, llm_name=mdlnm): | |
num += cls.model.update(used_tokens = u.used_tokens + used_tokens)\ | |
.where(cls.model.tenant_id == tenant_id, cls.model.llm_name == mdlnm)\ | |
.execute() | |
except Exception as e: | |
pass | |
return num | |
def get_openai_models(cls): | |
objs = cls.model.select().where( | |
(cls.model.llm_factory == "OpenAI"), | |
~(cls.model.llm_name == "text-embedding-3-small"), | |
~(cls.model.llm_name == "text-embedding-3-large") | |
).dicts() | |
return list(objs) | |
class LLMBundle(object): | |
def __init__(self, tenant_id, llm_type, llm_name=None, lang="Chinese"): | |
self.tenant_id = tenant_id | |
self.llm_type = llm_type | |
self.llm_name = llm_name | |
self.mdl = TenantLLMService.model_instance( | |
tenant_id, llm_type, llm_name, lang=lang) | |
assert self.mdl, "Can't find mole for {}/{}/{}".format( | |
tenant_id, llm_type, llm_name) | |
self.max_length = 512 | |
for lm in LLMService.query(llm_name=llm_name): | |
self.max_length = lm.max_tokens | |
break | |
def encode(self, texts: list, batch_size=32): | |
emd, used_tokens = self.mdl.encode(texts, batch_size) | |
if not TenantLLMService.increase_usage( | |
self.tenant_id, self.llm_type, used_tokens): | |
database_logger.error( | |
"Can't update token usage for {}/EMBEDDING".format(self.tenant_id)) | |
return emd, used_tokens | |
def encode_queries(self, query: str): | |
emd, used_tokens = self.mdl.encode_queries(query) | |
if not TenantLLMService.increase_usage( | |
self.tenant_id, self.llm_type, used_tokens): | |
database_logger.error( | |
"Can't update token usage for {}/EMBEDDING".format(self.tenant_id)) | |
return emd, used_tokens | |
def similarity(self, query: str, texts: list): | |
sim, used_tokens = self.mdl.similarity(query, texts) | |
if not TenantLLMService.increase_usage( | |
self.tenant_id, self.llm_type, used_tokens): | |
database_logger.error( | |
"Can't update token usage for {}/RERANK".format(self.tenant_id)) | |
return sim, used_tokens | |
def describe(self, image, max_tokens=300): | |
txt, used_tokens = self.mdl.describe(image, max_tokens) | |
if not TenantLLMService.increase_usage( | |
self.tenant_id, self.llm_type, used_tokens): | |
database_logger.error( | |
"Can't update token usage for {}/IMAGE2TEXT".format(self.tenant_id)) | |
return txt | |
def transcription(self, audio): | |
txt, used_tokens = self.mdl.transcription(audio) | |
if not TenantLLMService.increase_usage( | |
self.tenant_id, self.llm_type, used_tokens): | |
database_logger.error( | |
"Can't update token usage for {}/SEQUENCE2TXT".format(self.tenant_id)) | |
return txt | |
def chat(self, system, history, gen_conf): | |
txt, used_tokens = self.mdl.chat(system, history, gen_conf) | |
if not TenantLLMService.increase_usage( | |
self.tenant_id, self.llm_type, used_tokens, self.llm_name): | |
database_logger.error( | |
"Can't update token usage for {}/CHAT".format(self.tenant_id)) | |
return txt | |
def chat_streamly(self, system, history, gen_conf): | |
for txt in self.mdl.chat_streamly(system, history, gen_conf): | |
if isinstance(txt, int): | |
if not TenantLLMService.increase_usage( | |
self.tenant_id, self.llm_type, txt, self.llm_name): | |
database_logger.error( | |
"Can't update token usage for {}/CHAT".format(self.tenant_id)) | |
return | |
yield txt | |