Spaces:
Paused
Paused
| # | |
| # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # | |
| import re | |
| import traceback | |
| from concurrent.futures import ThreadPoolExecutor, ALL_COMPLETED, wait | |
| from threading import Lock | |
| from typing import Tuple | |
| import umap | |
| import numpy as np | |
| from sklearn.mixture import GaussianMixture | |
| from rag.utils import num_tokens_from_string, truncate | |
| class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval: | |
| def __init__(self, max_cluster, llm_model, embd_model, prompt, max_token=256, threshold=0.1): | |
| self._max_cluster = max_cluster | |
| self._llm_model = llm_model | |
| self._embd_model = embd_model | |
| self._threshold = threshold | |
| self._prompt = prompt | |
| self._max_token = max_token | |
| def _get_optimal_clusters(self, embeddings: np.ndarray, random_state:int): | |
| max_clusters = min(self._max_cluster, len(embeddings)) | |
| n_clusters = np.arange(1, max_clusters) | |
| bics = [] | |
| for n in n_clusters: | |
| gm = GaussianMixture(n_components=n, random_state=random_state) | |
| gm.fit(embeddings) | |
| bics.append(gm.bic(embeddings)) | |
| optimal_clusters = n_clusters[np.argmin(bics)] | |
| return optimal_clusters | |
| def __call__(self, chunks: Tuple[str, np.ndarray], random_state, callback=None): | |
| layers = [(0, len(chunks))] | |
| start, end = 0, len(chunks) | |
| if len(chunks) <= 1: return | |
| def summarize(ck_idx, lock): | |
| nonlocal chunks | |
| try: | |
| texts = [chunks[i][0] for i in ck_idx] | |
| len_per_chunk = int((self._llm_model.max_length - self._max_token)/len(texts)) | |
| cluster_content = "\n".join([truncate(t, max(1, len_per_chunk)) for t in texts]) | |
| cnt = self._llm_model.chat("You're a helpful assistant.", | |
| [{"role": "user", "content": self._prompt.format(cluster_content=cluster_content)}], | |
| {"temperature": 0.3, "max_tokens": self._max_token} | |
| ) | |
| cnt = re.sub("(路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵|For the content length reason, it stopped, continue?)", "", cnt) | |
| print("SUM:", cnt) | |
| embds, _ = self._embd_model.encode([cnt]) | |
| with lock: | |
| chunks.append((cnt, embds[0])) | |
| except Exception as e: | |
| print(e, flush=True) | |
| traceback.print_stack(e) | |
| return e | |
| labels = [] | |
| while end - start > 1: | |
| embeddings = [embd for _, embd in chunks[start: end]] | |
| if len(embeddings) == 2: | |
| summarize([start, start+1], Lock()) | |
| if callback: | |
| callback(msg="Cluster one layer: {} -> {}".format(end-start, len(chunks)-end)) | |
| labels.extend([0,0]) | |
| layers.append((end, len(chunks))) | |
| start = end | |
| end = len(chunks) | |
| continue | |
| n_neighbors = int((len(embeddings) - 1) ** 0.8) | |
| reduced_embeddings = umap.UMAP( | |
| n_neighbors=max(2, n_neighbors), n_components=min(12, len(embeddings)-2), metric="cosine" | |
| ).fit_transform(embeddings) | |
| n_clusters = self._get_optimal_clusters(reduced_embeddings, random_state) | |
| if n_clusters == 1: | |
| lbls = [0 for _ in range(len(reduced_embeddings))] | |
| else: | |
| gm = GaussianMixture(n_components=n_clusters, random_state=random_state) | |
| gm.fit(reduced_embeddings) | |
| probs = gm.predict_proba(reduced_embeddings) | |
| lbls = [np.where(prob > self._threshold)[0] for prob in probs] | |
| lbls = [lbl[0] if isinstance(lbl, np.ndarray) else lbl for lbl in lbls] | |
| lock = Lock() | |
| with ThreadPoolExecutor(max_workers=12) as executor: | |
| threads = [] | |
| for c in range(n_clusters): | |
| ck_idx = [i+start for i in range(len(lbls)) if lbls[i] == c] | |
| threads.append(executor.submit(summarize, ck_idx, lock)) | |
| wait(threads, return_when=ALL_COMPLETED) | |
| print([t.result() for t in threads]) | |
| assert len(chunks) - end == n_clusters, "{} vs. {}".format(len(chunks) - end, n_clusters) | |
| labels.extend(lbls) | |
| layers.append((end, len(chunks))) | |
| if callback: | |
| callback(msg="Cluster one layer: {} -> {}".format(end-start, len(chunks)-end)) | |
| start = end | |
| end = len(chunks) | |