Spaces:
Paused
Paused
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # | |
| import base64 | |
| import datetime | |
| import json | |
| import re | |
| import pandas as pd | |
| import requests | |
| from api.db.services.knowledgebase_service import KnowledgebaseService | |
| from rag.nlp import rag_tokenizer | |
| from deepdoc.parser.resume import refactor | |
| from deepdoc.parser.resume import step_one, step_two | |
| from rag.settings import cron_logger | |
| from rag.utils import rmSpace | |
| forbidden_select_fields4resume = [ | |
| "name_pinyin_kwd", "edu_first_fea_kwd", "degree_kwd", "sch_rank_kwd", "edu_fea_kwd" | |
| ] | |
| def remote_call(filename, binary): | |
| q = { | |
| "header": { | |
| "uid": 1, | |
| "user": "kevinhu", | |
| "log_id": filename | |
| }, | |
| "request": { | |
| "p": { | |
| "request_id": "1", | |
| "encrypt_type": "base64", | |
| "filename": filename, | |
| "langtype": '', | |
| "fileori": base64.b64encode(binary).decode('utf-8') | |
| }, | |
| "c": "resume_parse_module", | |
| "m": "resume_parse" | |
| } | |
| } | |
| for _ in range(3): | |
| try: | |
| resume = requests.post( | |
| "http://127.0.0.1:61670/tog", | |
| data=json.dumps(q)) | |
| resume = resume.json()["response"]["results"] | |
| resume = refactor(resume) | |
| for k in ["education", "work", "project", | |
| "training", "skill", "certificate", "language"]: | |
| if not resume.get(k) and k in resume: | |
| del resume[k] | |
| resume = step_one.refactor(pd.DataFrame([{"resume_content": json.dumps(resume), "tob_resume_id": "x", | |
| "updated_at": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}])) | |
| resume = step_two.parse(resume) | |
| return resume | |
| except Exception as e: | |
| cron_logger.error("Resume parser error: " + str(e)) | |
| return {} | |
| def chunk(filename, binary=None, callback=None, **kwargs): | |
| """ | |
| The supported file formats are pdf, docx and txt. | |
| To maximize the effectiveness, parse the resume correctly, please concat us: https://github.com/infiniflow/ragflow | |
| """ | |
| if not re.search(r"\.(pdf|doc|docx|txt)$", filename, flags=re.IGNORECASE): | |
| raise NotImplementedError("file type not supported yet(pdf supported)") | |
| if not binary: | |
| with open(filename, "rb") as f: | |
| binary = f.read() | |
| callback(0.2, "Resume parsing is going on...") | |
| resume = remote_call(filename, binary) | |
| if len(resume.keys()) < 7: | |
| callback(-1, "Resume is not successfully parsed.") | |
| raise Exception("Resume parser remote call fail!") | |
| callback(0.6, "Done parsing. Chunking...") | |
| print(json.dumps(resume, ensure_ascii=False, indent=2)) | |
| field_map = { | |
| "name_kwd": "姓名/名字", | |
| "name_pinyin_kwd": "姓名拼音/名字拼音", | |
| "gender_kwd": "性别(男,女)", | |
| "age_int": "年龄/岁/年纪", | |
| "phone_kwd": "电话/手机/微信", | |
| "email_tks": "email/e-mail/邮箱", | |
| "position_name_tks": "职位/职能/岗位/职责", | |
| "expect_city_names_tks": "期望城市", | |
| "work_exp_flt": "工作年限/工作年份/N年经验/毕业了多少年", | |
| "corporation_name_tks": "最近就职(上班)的公司/上一家公司", | |
| "first_school_name_tks": "第一学历毕业学校", | |
| "first_degree_kwd": "第一学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)", | |
| "highest_degree_kwd": "最高学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)", | |
| "first_major_tks": "第一学历专业", | |
| "edu_first_fea_kwd": "第一学历标签(211,留学,双一流,985,海外知名,重点大学,中专,专升本,专科,本科,大专)", | |
| "degree_kwd": "过往学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)", | |
| "major_tks": "学过的专业/过往专业", | |
| "school_name_tks": "学校/毕业院校", | |
| "sch_rank_kwd": "学校标签(顶尖学校,精英学校,优质学校,一般学校)", | |
| "edu_fea_kwd": "教育标签(211,留学,双一流,985,海外知名,重点大学,中专,专升本,专科,本科,大专)", | |
| "corp_nm_tks": "就职过的公司/之前的公司/上过班的公司", | |
| "edu_end_int": "毕业年份", | |
| "industry_name_tks": "所在行业", | |
| "birth_dt": "生日/出生年份", | |
| "expect_position_name_tks": "期望职位/期望职能/期望岗位", | |
| } | |
| titles = [] | |
| for n in ["name_kwd", "gender_kwd", "position_name_tks", "age_int"]: | |
| v = resume.get(n, "") | |
| if isinstance(v, list): | |
| v = v[0] | |
| if n.find("tks") > 0: | |
| v = rmSpace(v) | |
| titles.append(str(v)) | |
| doc = { | |
| "docnm_kwd": filename, | |
| "title_tks": rag_tokenizer.tokenize("-".join(titles) + "-简历") | |
| } | |
| doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"]) | |
| pairs = [] | |
| for n, m in field_map.items(): | |
| if not resume.get(n): | |
| continue | |
| v = resume[n] | |
| if isinstance(v, list): | |
| v = " ".join(v) | |
| if n.find("tks") > 0: | |
| v = rmSpace(v) | |
| pairs.append((m, str(v))) | |
| doc["content_with_weight"] = "\n".join( | |
| ["{}: {}".format(re.sub(r"([^()]+)", "", k), v) for k, v in pairs]) | |
| doc["content_ltks"] = rag_tokenizer.tokenize(doc["content_with_weight"]) | |
| doc["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(doc["content_ltks"]) | |
| for n, _ in field_map.items(): | |
| if n not in resume: | |
| continue | |
| if isinstance(resume[n], list) and ( | |
| len(resume[n]) == 1 or n not in forbidden_select_fields4resume): | |
| resume[n] = resume[n][0] | |
| if n.find("_tks") > 0: | |
| resume[n] = rag_tokenizer.fine_grained_tokenize(resume[n]) | |
| doc[n] = resume[n] | |
| print(doc) | |
| KnowledgebaseService.update_parser_config( | |
| kwargs["kb_id"], {"field_map": field_map}) | |
| return [doc] | |
| if __name__ == "__main__": | |
| import sys | |
| def dummy(a, b): | |
| pass | |
| chunk(sys.argv[1], callback=dummy) | |