File size: 7,487 Bytes
ab2ded1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#

import json
import math
import re
import logging
import copy
from elasticsearch_dsl import Q

from rag.nlp import rag_tokenizer, term_weight, synonym

class EsQueryer:
    def __init__(self, es):
        self.tw = term_weight.Dealer()
        self.es = es
        self.syn = synonym.Dealer()
        self.flds = ["ask_tks^10", "ask_small_tks"]

    @staticmethod
    def subSpecialChar(line):
        return re.sub(r"([:\{\}/\[\]\-\*\"\(\)\|~\^])", r"\\\1", line).strip()

    @staticmethod
    def isChinese(line):
        arr = re.split(r"[ \t]+", line)
        if len(arr) <= 3:
            return True
        e = 0
        for t in arr:
            if not re.match(r"[a-zA-Z]+$", t):
                e += 1
        return e * 1. / len(arr) >= 0.7

    @staticmethod
    def rmWWW(txt):
        patts = [
            (r"是*(什么样的|哪家|一下|那家|请问|啥样|咋样了|什么时候|何时|何地|何人|是否|是不是|多少|哪里|怎么|哪儿|怎么样|如何|哪些|是啥|啥是|啊|吗|呢|吧|咋|什么|有没有|呀)是*", ""),
            (r"(^| )(what|who|how|which|where|why)('re|'s)? ", " "),
            (r"(^| )('s|'re|is|are|were|was|do|does|did|don't|doesn't|didn't|has|have|be|there|you|me|your|my|mine|just|please|may|i|should|would|wouldn't|will|won't|done|go|for|with|so|the|a|an|by|i'm|it's|he's|she's|they|they're|you're|as|by|on|in|at|up|out|down) ", " ")
        ]
        for r, p in patts:
            txt = re.sub(r, p, txt, flags=re.IGNORECASE)
        return txt

    def question(self, txt, tbl="qa", min_match="60%"):
        txt = re.sub(
            r"[ :\r\n\t,,。??/`!!&\^%%]+",
            " ",
            rag_tokenizer.tradi2simp(
                rag_tokenizer.strQ2B(
                    txt.lower()))).strip()
        txt = EsQueryer.rmWWW(txt)

        if not self.isChinese(txt):
            tks = rag_tokenizer.tokenize(txt).split(" ")
            tks_w = self.tw.weights(tks)
            tks_w = [(re.sub(r"[ \\\"'^]", "", tk), w) for tk, w in tks_w]
            tks_w = [(re.sub(r"^[a-z0-9]$", "", tk), w) for tk, w in tks_w if tk]
            tks_w = [(re.sub(r"^[\+-]", "", tk), w) for tk, w in tks_w if tk]
            q = ["{}^{:.4f}".format(tk, w) for tk, w in tks_w if tk]
            for i in range(1, len(tks_w)):
                q.append("\"%s %s\"^%.4f" % (tks_w[i - 1][0], tks_w[i][0], max(tks_w[i - 1][1], tks_w[i][1])*2))
            if not q:
                q.append(txt)
            return Q("bool",
                     must=Q("query_string", fields=self.flds,
                            type="best_fields", query=" ".join(q),
                            boost=1)#, minimum_should_match=min_match)
                     ), tks

        def need_fine_grained_tokenize(tk):
            if len(tk) < 4:
                return False
            if re.match(r"[0-9a-z\.\+#_\*-]+$", tk):
                return False
            return True

        qs, keywords = [], []
        for tt in self.tw.split(txt)[:256]:  # .split(" "):
            if not tt:
                continue
            twts = self.tw.weights([tt])
            syns = self.syn.lookup(tt)
            logging.info(json.dumps(twts, ensure_ascii=False))
            tms = []
            for tk, w in sorted(twts, key=lambda x: x[1] * -1):
                sm = rag_tokenizer.fine_grained_tokenize(tk).split(" ") if need_fine_grained_tokenize(tk) else []
                sm = [
                    re.sub(
                        r"[ ,\./;'\[\]\\`~!@#$%\^&\*\(\)=\+_<>\?:\"\{\}\|,。;‘’【】、!¥……()——《》?:“”-]+",
                        "",
                        m) for m in sm]
                sm = [EsQueryer.subSpecialChar(m) for m in sm if len(m) > 1]
                sm = [m for m in sm if len(m) > 1]
                if len(sm) < 2:
                    sm = []

                keywords.append(re.sub(r"[ \\\"']+", "", tk))
                if len(keywords) >= 12: break

                tk_syns = self.syn.lookup(tk)
                tk = EsQueryer.subSpecialChar(tk)
                if tk.find(" ") > 0:
                    tk = "\"%s\"" % tk
                if tk_syns:
                    tk = f"({tk} %s)" % " ".join(tk_syns)
                if sm:
                    tk = f"{tk} OR \"%s\" OR (\"%s\"~2)^0.5" % (
                        " ".join(sm), " ".join(sm))
                if tk.strip():
                    tms.append((tk, w))

            tms = " ".join([f"({t})^{w}" for t, w in tms])

            if len(twts) > 1:
                tms += f" (\"%s\"~4)^1.5" % (" ".join([t for t, _ in twts]))
            if re.match(r"[0-9a-z ]+$", tt):
                tms = f"(\"{tt}\" OR \"%s\")" % rag_tokenizer.tokenize(tt)

            syns = " OR ".join(
                ["\"%s\"^0.7" % EsQueryer.subSpecialChar(rag_tokenizer.tokenize(s)) for s in syns])
            if syns:
                tms = f"({tms})^5 OR ({syns})^0.7"

            qs.append(tms)

        flds = copy.deepcopy(self.flds)
        mst = []
        if qs:
            mst.append(
                Q("query_string", fields=flds, type="best_fields",
                  query=" OR ".join([f"({t})" for t in qs if t]), boost=1, minimum_should_match=min_match)
            )

        return Q("bool",
                 must=mst,
                 ), keywords

    def hybrid_similarity(self, avec, bvecs, atks, btkss, tkweight=0.3,
                          vtweight=0.7):
        from sklearn.metrics.pairwise import cosine_similarity as CosineSimilarity
        import numpy as np
        sims = CosineSimilarity([avec], bvecs)
        tksim = self.token_similarity(atks, btkss)
        return np.array(sims[0]) * vtweight + \
            np.array(tksim) * tkweight, tksim, sims[0]

    def token_similarity(self, atks, btkss):
        def toDict(tks):
            d = {}
            if isinstance(tks, str):
                tks = tks.split(" ")
            for t, c in self.tw.weights(tks):
                if t not in d:
                    d[t] = 0
                d[t] += c
            return d

        atks = toDict(atks)
        btkss = [toDict(tks) for tks in btkss]
        return [self.similarity(atks, btks) for btks in btkss]

    def similarity(self, qtwt, dtwt):
        if isinstance(dtwt, type("")):
            dtwt = {t: w for t, w in self.tw.weights(self.tw.split(dtwt))}
        if isinstance(qtwt, type("")):
            qtwt = {t: w for t, w in self.tw.weights(self.tw.split(qtwt))}
        s = 1e-9
        for k, v in qtwt.items():
            if k in dtwt:
                s += v  # * dtwt[k]
        q = 1e-9
        for k, v in qtwt.items():
            q += v  # * v
        #d = 1e-9
        # for k, v in dtwt.items():
        #    d += v * v
        return s / q / max(1, math.sqrt(math.log10(max(len(qtwt.keys()), len(dtwt.keys())))))# math.sqrt(q) / math.sqrt(d)