Spaces:
Running
Running
| # flake8: noqa: E402 | |
| import os | |
| import torch | |
| from torch.nn import functional as F | |
| from torch.utils.data import DataLoader | |
| from torch.utils.tensorboard import SummaryWriter | |
| import torch.distributed as dist | |
| from torch.nn.parallel import DistributedDataParallel as DDP | |
| from torch.cuda.amp import autocast, GradScaler | |
| from tqdm import tqdm | |
| import logging | |
| logging.getLogger("numba").setLevel(logging.WARNING) | |
| import commons | |
| import utils | |
| from data_utils import ( | |
| TextAudioSpeakerLoader, | |
| TextAudioSpeakerCollate, | |
| DistributedBucketSampler, | |
| ) | |
| from models import ( | |
| SynthesizerTrn, | |
| MultiPeriodDiscriminator, | |
| DurationDiscriminator, | |
| ) | |
| from losses import generator_loss, discriminator_loss, feature_loss, kl_loss | |
| from mel_processing import mel_spectrogram_torch, spec_to_mel_torch | |
| from text.symbols import symbols | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| torch.backends.cudnn.allow_tf32 = ( | |
| True # If encontered training problem,please try to disable TF32. | |
| ) | |
| torch.set_float32_matmul_precision("medium") | |
| torch.backends.cudnn.benchmark = True | |
| torch.backends.cuda.sdp_kernel("flash") | |
| torch.backends.cuda.enable_flash_sdp(True) | |
| torch.backends.cuda.enable_mem_efficient_sdp( | |
| True | |
| ) # Not available if torch version is lower than 2.0 | |
| torch.backends.cuda.enable_math_sdp(True) | |
| global_step = 0 | |
| def run(): | |
| dist.init_process_group( | |
| backend="gloo", | |
| init_method='tcp://127.0.0.1:11451', # Due to some training problem,we proposed to use gloo instead of nccl. | |
| rank=0, | |
| world_size=1, | |
| ) # Use torchrun instead of mp.spawn | |
| rank = dist.get_rank() | |
| n_gpus = dist.get_world_size() | |
| hps = utils.get_hparams() | |
| torch.manual_seed(hps.train.seed) | |
| torch.cuda.set_device(rank) | |
| global global_step | |
| if rank == 0: | |
| logger = utils.get_logger(hps.model_dir) | |
| logger.info(hps) | |
| utils.check_git_hash(hps.model_dir) | |
| writer = SummaryWriter(log_dir=hps.model_dir) | |
| writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval")) | |
| train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data) | |
| train_sampler = DistributedBucketSampler( | |
| train_dataset, | |
| hps.train.batch_size, | |
| [32, 300, 400, 500, 600, 700, 800, 900, 1000], | |
| num_replicas=n_gpus, | |
| rank=rank, | |
| shuffle=True, | |
| ) | |
| collate_fn = TextAudioSpeakerCollate() | |
| train_loader = DataLoader( | |
| train_dataset, | |
| num_workers=16, | |
| shuffle=False, | |
| pin_memory=True, | |
| collate_fn=collate_fn, | |
| batch_sampler=train_sampler, | |
| persistent_workers=True, | |
| prefetch_factor=4, | |
| ) # DataLoader config could be adjusted. | |
| if rank == 0: | |
| eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data) | |
| eval_loader = DataLoader( | |
| eval_dataset, | |
| num_workers=0, | |
| shuffle=False, | |
| batch_size=1, | |
| pin_memory=True, | |
| drop_last=False, | |
| collate_fn=collate_fn, | |
| ) | |
| if ( | |
| "use_noise_scaled_mas" in hps.model.keys() | |
| and hps.model.use_noise_scaled_mas is True | |
| ): | |
| print("Using noise scaled MAS for VITS2") | |
| mas_noise_scale_initial = 0.01 | |
| noise_scale_delta = 2e-6 | |
| else: | |
| print("Using normal MAS for VITS1") | |
| mas_noise_scale_initial = 0.0 | |
| noise_scale_delta = 0.0 | |
| if ( | |
| "use_duration_discriminator" in hps.model.keys() | |
| and hps.model.use_duration_discriminator is True | |
| ): | |
| print("Using duration discriminator for VITS2") | |
| net_dur_disc = DurationDiscriminator( | |
| hps.model.hidden_channels, | |
| hps.model.hidden_channels, | |
| 3, | |
| 0.1, | |
| gin_channels=hps.model.gin_channels if hps.data.n_speakers != 0 else 0, | |
| ).cuda(rank) | |
| if ( | |
| "use_spk_conditioned_encoder" in hps.model.keys() | |
| and hps.model.use_spk_conditioned_encoder is True | |
| ): | |
| if hps.data.n_speakers == 0: | |
| raise ValueError( | |
| "n_speakers must be > 0 when using spk conditioned encoder to train multi-speaker model" | |
| ) | |
| else: | |
| print("Using normal encoder for VITS1") | |
| net_g = SynthesizerTrn( | |
| len(symbols), | |
| hps.data.filter_length // 2 + 1, | |
| hps.train.segment_size // hps.data.hop_length, | |
| n_speakers=hps.data.n_speakers, | |
| mas_noise_scale_initial=mas_noise_scale_initial, | |
| noise_scale_delta=noise_scale_delta, | |
| **hps.model, | |
| ).cuda(rank) | |
| net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank) | |
| optim_g = torch.optim.AdamW( | |
| filter(lambda p: p.requires_grad, net_g.parameters()), | |
| hps.train.learning_rate, | |
| betas=hps.train.betas, | |
| eps=hps.train.eps, | |
| ) | |
| optim_d = torch.optim.AdamW( | |
| net_d.parameters(), | |
| hps.train.learning_rate, | |
| betas=hps.train.betas, | |
| eps=hps.train.eps, | |
| ) | |
| if net_dur_disc is not None: | |
| optim_dur_disc = torch.optim.AdamW( | |
| net_dur_disc.parameters(), | |
| hps.train.learning_rate, | |
| betas=hps.train.betas, | |
| eps=hps.train.eps, | |
| ) | |
| else: | |
| optim_dur_disc = None | |
| net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True) | |
| net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True) | |
| if net_dur_disc is not None: | |
| net_dur_disc = DDP(net_dur_disc, device_ids=[rank], find_unused_parameters=True) | |
| try: | |
| if net_dur_disc is not None: | |
| _, _, dur_resume_lr, epoch_str = utils.load_checkpoint( | |
| utils.latest_checkpoint_path(hps.model_dir, "DUR_*.pth"), | |
| net_dur_disc, | |
| optim_dur_disc, | |
| skip_optimizer=hps.train.skip_optimizer | |
| if "skip_optimizer" in hps.train | |
| else True, | |
| ) | |
| _, optim_g, g_resume_lr, epoch_str = utils.load_checkpoint( | |
| utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), | |
| net_g, | |
| optim_g, | |
| skip_optimizer=hps.train.skip_optimizer | |
| if "skip_optimizer" in hps.train | |
| else True, | |
| ) | |
| _, optim_d, d_resume_lr, epoch_str = utils.load_checkpoint( | |
| utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), | |
| net_d, | |
| optim_d, | |
| skip_optimizer=hps.train.skip_optimizer | |
| if "skip_optimizer" in hps.train | |
| else True, | |
| ) | |
| if not optim_g.param_groups[0].get("initial_lr"): | |
| optim_g.param_groups[0]["initial_lr"] = g_resume_lr | |
| if not optim_d.param_groups[0].get("initial_lr"): | |
| optim_d.param_groups[0]["initial_lr"] = d_resume_lr | |
| if not optim_dur_disc.param_groups[0].get("initial_lr"): | |
| optim_dur_disc.param_groups[0]["initial_lr"] = dur_resume_lr | |
| epoch_str = max(epoch_str, 1) | |
| global_step = (epoch_str - 1) * len(train_loader) | |
| except Exception as e: | |
| print(e) | |
| epoch_str = 1 | |
| global_step = 0 | |
| scheduler_g = torch.optim.lr_scheduler.ExponentialLR( | |
| optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2 | |
| ) | |
| scheduler_d = torch.optim.lr_scheduler.ExponentialLR( | |
| optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2 | |
| ) | |
| if net_dur_disc is not None: | |
| if not optim_dur_disc.param_groups[0].get("initial_lr"): | |
| optim_dur_disc.param_groups[0]["initial_lr"] = dur_resume_lr | |
| scheduler_dur_disc = torch.optim.lr_scheduler.ExponentialLR( | |
| optim_dur_disc, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2 | |
| ) | |
| else: | |
| scheduler_dur_disc = None | |
| scaler = GradScaler(enabled=hps.train.fp16_run) | |
| for epoch in range(epoch_str, hps.train.epochs + 1): | |
| if rank == 0: | |
| train_and_evaluate( | |
| rank, | |
| epoch, | |
| hps, | |
| [net_g, net_d, net_dur_disc], | |
| [optim_g, optim_d, optim_dur_disc], | |
| [scheduler_g, scheduler_d, scheduler_dur_disc], | |
| scaler, | |
| [train_loader, eval_loader], | |
| logger, | |
| [writer, writer_eval], | |
| ) | |
| else: | |
| train_and_evaluate( | |
| rank, | |
| epoch, | |
| hps, | |
| [net_g, net_d, net_dur_disc], | |
| [optim_g, optim_d, optim_dur_disc], | |
| [scheduler_g, scheduler_d, scheduler_dur_disc], | |
| scaler, | |
| [train_loader, None], | |
| None, | |
| None, | |
| ) | |
| scheduler_g.step() | |
| scheduler_d.step() | |
| if net_dur_disc is not None: | |
| scheduler_dur_disc.step() | |
| def train_and_evaluate( | |
| rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers | |
| ): | |
| net_g, net_d, net_dur_disc = nets | |
| optim_g, optim_d, optim_dur_disc = optims | |
| scheduler_g, scheduler_d, scheduler_dur_disc = schedulers | |
| train_loader, eval_loader = loaders | |
| if writers is not None: | |
| writer, writer_eval = writers | |
| train_loader.batch_sampler.set_epoch(epoch) | |
| global global_step | |
| net_g.train() | |
| net_d.train() | |
| if net_dur_disc is not None: | |
| net_dur_disc.train() | |
| for batch_idx, ( | |
| x, | |
| x_lengths, | |
| spec, | |
| spec_lengths, | |
| y, | |
| y_lengths, | |
| speakers, | |
| tone, | |
| language, | |
| bert, | |
| ja_bert, | |
| ) in tqdm(enumerate(train_loader)): | |
| if net_g.module.use_noise_scaled_mas: | |
| current_mas_noise_scale = ( | |
| net_g.module.mas_noise_scale_initial | |
| - net_g.module.noise_scale_delta * global_step | |
| ) | |
| net_g.module.current_mas_noise_scale = max(current_mas_noise_scale, 0.0) | |
| x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda( | |
| rank, non_blocking=True | |
| ) | |
| spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda( | |
| rank, non_blocking=True | |
| ) | |
| y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda( | |
| rank, non_blocking=True | |
| ) | |
| speakers = speakers.cuda(rank, non_blocking=True) | |
| tone = tone.cuda(rank, non_blocking=True) | |
| language = language.cuda(rank, non_blocking=True) | |
| bert = bert.cuda(rank, non_blocking=True) | |
| ja_bert = ja_bert.cuda(rank, non_blocking=True) | |
| with autocast(enabled=hps.train.fp16_run): | |
| ( | |
| y_hat, | |
| l_length, | |
| attn, | |
| ids_slice, | |
| x_mask, | |
| z_mask, | |
| (z, z_p, m_p, logs_p, m_q, logs_q), | |
| (hidden_x, logw, logw_), | |
| ) = net_g( | |
| x, | |
| x_lengths, | |
| spec, | |
| spec_lengths, | |
| speakers, | |
| tone, | |
| language, | |
| bert, | |
| ja_bert, | |
| ) | |
| mel = spec_to_mel_torch( | |
| spec, | |
| hps.data.filter_length, | |
| hps.data.n_mel_channels, | |
| hps.data.sampling_rate, | |
| hps.data.mel_fmin, | |
| hps.data.mel_fmax, | |
| ) | |
| y_mel = commons.slice_segments( | |
| mel, ids_slice, hps.train.segment_size // hps.data.hop_length | |
| ) | |
| y_hat_mel = mel_spectrogram_torch( | |
| y_hat.squeeze(1), | |
| hps.data.filter_length, | |
| hps.data.n_mel_channels, | |
| hps.data.sampling_rate, | |
| hps.data.hop_length, | |
| hps.data.win_length, | |
| hps.data.mel_fmin, | |
| hps.data.mel_fmax, | |
| ) | |
| y = commons.slice_segments( | |
| y, ids_slice * hps.data.hop_length, hps.train.segment_size | |
| ) # slice | |
| # Discriminator | |
| y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach()) | |
| with autocast(enabled=False): | |
| loss_disc, losses_disc_r, losses_disc_g = discriminator_loss( | |
| y_d_hat_r, y_d_hat_g | |
| ) | |
| loss_disc_all = loss_disc | |
| if net_dur_disc is not None: | |
| y_dur_hat_r, y_dur_hat_g = net_dur_disc( | |
| hidden_x.detach(), x_mask.detach(), logw.detach(), logw_.detach() | |
| ) | |
| with autocast(enabled=False): | |
| # TODO: I think need to mean using the mask, but for now, just mean all | |
| ( | |
| loss_dur_disc, | |
| losses_dur_disc_r, | |
| losses_dur_disc_g, | |
| ) = discriminator_loss(y_dur_hat_r, y_dur_hat_g) | |
| loss_dur_disc_all = loss_dur_disc | |
| optim_dur_disc.zero_grad() | |
| scaler.scale(loss_dur_disc_all).backward() | |
| scaler.unscale_(optim_dur_disc) | |
| commons.clip_grad_value_(net_dur_disc.parameters(), None) | |
| scaler.step(optim_dur_disc) | |
| optim_d.zero_grad() | |
| scaler.scale(loss_disc_all).backward() | |
| scaler.unscale_(optim_d) | |
| grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None) | |
| scaler.step(optim_d) | |
| with autocast(enabled=hps.train.fp16_run): | |
| # Generator | |
| y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat) | |
| if net_dur_disc is not None: | |
| y_dur_hat_r, y_dur_hat_g = net_dur_disc(hidden_x, x_mask, logw, logw_) | |
| with autocast(enabled=False): | |
| loss_dur = torch.sum(l_length.float()) | |
| loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel | |
| loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl | |
| loss_fm = feature_loss(fmap_r, fmap_g) | |
| loss_gen, losses_gen = generator_loss(y_d_hat_g) | |
| loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl | |
| if net_dur_disc is not None: | |
| loss_dur_gen, losses_dur_gen = generator_loss(y_dur_hat_g) | |
| loss_gen_all += loss_dur_gen | |
| optim_g.zero_grad() | |
| scaler.scale(loss_gen_all).backward() | |
| scaler.unscale_(optim_g) | |
| grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None) | |
| scaler.step(optim_g) | |
| scaler.update() | |
| if rank == 0: | |
| if global_step % hps.train.log_interval == 0: | |
| lr = optim_g.param_groups[0]["lr"] | |
| losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl] | |
| logger.info( | |
| "Train Epoch: {} [{:.0f}%]".format( | |
| epoch, 100.0 * batch_idx / len(train_loader) | |
| ) | |
| ) | |
| logger.info([x.item() for x in losses] + [global_step, lr]) | |
| scalar_dict = { | |
| "loss/g/total": loss_gen_all, | |
| "loss/d/total": loss_disc_all, | |
| "learning_rate": lr, | |
| "grad_norm_d": grad_norm_d, | |
| "grad_norm_g": grad_norm_g, | |
| } | |
| scalar_dict.update( | |
| { | |
| "loss/g/fm": loss_fm, | |
| "loss/g/mel": loss_mel, | |
| "loss/g/dur": loss_dur, | |
| "loss/g/kl": loss_kl, | |
| } | |
| ) | |
| scalar_dict.update( | |
| {"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)} | |
| ) | |
| scalar_dict.update( | |
| {"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)} | |
| ) | |
| scalar_dict.update( | |
| {"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)} | |
| ) | |
| image_dict = { | |
| "slice/mel_org": utils.plot_spectrogram_to_numpy( | |
| y_mel[0].data.cpu().numpy() | |
| ), | |
| "slice/mel_gen": utils.plot_spectrogram_to_numpy( | |
| y_hat_mel[0].data.cpu().numpy() | |
| ), | |
| "all/mel": utils.plot_spectrogram_to_numpy( | |
| mel[0].data.cpu().numpy() | |
| ), | |
| "all/attn": utils.plot_alignment_to_numpy( | |
| attn[0, 0].data.cpu().numpy() | |
| ), | |
| } | |
| utils.summarize( | |
| writer=writer, | |
| global_step=global_step, | |
| images=image_dict, | |
| scalars=scalar_dict, | |
| ) | |
| if global_step % hps.train.eval_interval == 0: | |
| evaluate(hps, net_g, eval_loader, writer_eval) | |
| utils.save_checkpoint( | |
| net_g, | |
| optim_g, | |
| hps.train.learning_rate, | |
| epoch, | |
| os.path.join(hps.model_dir, "G_{}.pth".format(global_step)), | |
| ) | |
| utils.save_checkpoint( | |
| net_d, | |
| optim_d, | |
| hps.train.learning_rate, | |
| epoch, | |
| os.path.join(hps.model_dir, "D_{}.pth".format(global_step)), | |
| ) | |
| if net_dur_disc is not None: | |
| utils.save_checkpoint( | |
| net_dur_disc, | |
| optim_dur_disc, | |
| hps.train.learning_rate, | |
| epoch, | |
| os.path.join(hps.model_dir, "DUR_{}.pth".format(global_step)), | |
| ) | |
| keep_ckpts = getattr(hps.train, "keep_ckpts", 5) | |
| if keep_ckpts > 0: | |
| utils.clean_checkpoints( | |
| path_to_models=hps.model_dir, | |
| n_ckpts_to_keep=keep_ckpts, | |
| sort_by_time=True, | |
| ) | |
| global_step += 1 | |
| if rank == 0: | |
| logger.info("====> Epoch: {}".format(epoch)) | |
| def evaluate(hps, generator, eval_loader, writer_eval): | |
| generator.eval() | |
| image_dict = {} | |
| audio_dict = {} | |
| print("Evaluating ...") | |
| with torch.no_grad(): | |
| for batch_idx, ( | |
| x, | |
| x_lengths, | |
| spec, | |
| spec_lengths, | |
| y, | |
| y_lengths, | |
| speakers, | |
| tone, | |
| language, | |
| bert, | |
| ja_bert, | |
| ) in enumerate(eval_loader): | |
| x, x_lengths = x.cuda(), x_lengths.cuda() | |
| spec, spec_lengths = spec.cuda(), spec_lengths.cuda() | |
| y, y_lengths = y.cuda(), y_lengths.cuda() | |
| speakers = speakers.cuda() | |
| bert = bert.cuda() | |
| ja_bert = ja_bert.cuda() | |
| tone = tone.cuda() | |
| language = language.cuda() | |
| for use_sdp in [True, False]: | |
| y_hat, attn, mask, *_ = generator.module.infer( | |
| x, | |
| x_lengths, | |
| speakers, | |
| tone, | |
| language, | |
| bert, | |
| ja_bert, | |
| y=spec, | |
| max_len=1000, | |
| sdp_ratio=0.0 if not use_sdp else 1.0, | |
| ) | |
| y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length | |
| mel = spec_to_mel_torch( | |
| spec, | |
| hps.data.filter_length, | |
| hps.data.n_mel_channels, | |
| hps.data.sampling_rate, | |
| hps.data.mel_fmin, | |
| hps.data.mel_fmax, | |
| ) | |
| y_hat_mel = mel_spectrogram_torch( | |
| y_hat.squeeze(1).float(), | |
| hps.data.filter_length, | |
| hps.data.n_mel_channels, | |
| hps.data.sampling_rate, | |
| hps.data.hop_length, | |
| hps.data.win_length, | |
| hps.data.mel_fmin, | |
| hps.data.mel_fmax, | |
| ) | |
| image_dict.update( | |
| { | |
| f"gen/mel_{batch_idx}": utils.plot_spectrogram_to_numpy( | |
| y_hat_mel[0].cpu().numpy() | |
| ) | |
| } | |
| ) | |
| audio_dict.update( | |
| { | |
| f"gen/audio_{batch_idx}_{use_sdp}": y_hat[ | |
| 0, :, : y_hat_lengths[0] | |
| ] | |
| } | |
| ) | |
| image_dict.update( | |
| { | |
| f"gt/mel_{batch_idx}": utils.plot_spectrogram_to_numpy( | |
| mel[0].cpu().numpy() | |
| ) | |
| } | |
| ) | |
| audio_dict.update({f"gt/audio_{batch_idx}": y[0, :, : y_lengths[0]]}) | |
| utils.summarize( | |
| writer=writer_eval, | |
| global_step=global_step, | |
| images=image_dict, | |
| audios=audio_dict, | |
| audio_sampling_rate=hps.data.sampling_rate, | |
| ) | |
| generator.train() | |
| if __name__ == "__main__": | |
| run() | |