Spaces:
Runtime error
Runtime error
File size: 2,599 Bytes
ade0520 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
import random
import tqdm
import os
import sys
import torch
import jsonlines
import argparse
import jsonlines
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
"""
git clone https://github.com/openai/human-eval
$ pip install -e human-eval
evaluate_functional_correctness sample-output-file
"""
def decode(tokens_list, tokenizer, raw_text_len):
sents = []
# print(len(tokens_list))
for tokens in tokens_list:
tokens = tokens.cpu().numpy().tolist()
sent = tokenizer.tokenizer.decode(
tokens[raw_text_len:])
sent = sent.split('<|endoftext|>')[0]
sent = sent.split('\n\n\n')[0]
sent = sent.split("\n\n")[0]
sent = sent.split("def ")[0]
sents.append(sent)
return sents
def generate_sample(model, tokenizer, input_txt):
input_ids = tokenizer.tokenizer.encode(input_txt)
raw_text_len = len(input_ids)
context_enc = torch.tensor([input_ids] ).to(model.device)
print(f"Input text: {input_txt}\n")
outputs = model.generate(context_enc)
output_text = decode(outputs,tokenizer,raw_text_len)[0]
print(f"\nOutput text: \n{output_text}\n")
return output_text
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Test HF checkpoint.')
parser.add_argument("-c", "--checkpoint-path", type=str, help='Checkpoint path', default="Qwen/Qwen-7B")
parser.add_argument("-f","--sample-input-file", type=str, default=None, help="data path to HumanEval.jsonl")
parser.add_argument("-o","--sample-output-file", type=str, default="HumanEval_res.jsonl")
args = parser.parse_args()
print('Loading tokenizer ...')
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint_path, trust_remote_code=True)
print('Loading model ...')
model = AutoModelForCausalLM.from_pretrained(args.checkpoint_path, device_map="auto", trust_remote_code=True).eval()
model.generation_config = GenerationConfig.from_pretrained(args.checkpoint_path, trust_remote_code=True)
model.generation_config.do_sample = False
f_output = jsonlines.Writer(open(args.sample_output_file, 'w', encoding='utf-8'))
f = jsonlines.open(args.sample_input_file)
with f_output as output:
for jobj in tqdm.tqdm(f, desc='task_idx'):
prompt = jobj['prompt']
task_id = jobj['task_id']
gen_sents = generate_sample(model, tokenizer, prompt)
gen_jobjs = {'task_id': task_id, "completion": gen_sents}
output.write(gen_jobjs)
f_output.close() |