Spaces:
Runtime error
Runtime error
File size: 36,030 Bytes
ade0520 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 |
{
"cells": [
{
"cell_type": "markdown",
"id": "30e24ef3",
"metadata": {
"tags": []
},
"source": [
"# 如何让 Qwen-7b 使用 Langchain 中的 工具\n",
"\n",
"本文档主要介绍如何让千问调用 [LangChain](https://python.langchain.com/docs/get_started/introduction.html) 框架中实现好的谷歌搜索、 WolframAlpha 等工具。将主要基于 [ReAct Prompting](https://github.com/QwenLM/Qwen-7B/blob/main/examples/react_prompt.md) 技术,一种特殊的链式思考(Chain-of-Thought,简称 CoT)提示技巧,来实现这一目的。"
]
},
{
"cell_type": "markdown",
"id": "212979ec",
"metadata": {
"tags": []
},
"source": [
"## 安装依赖"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "e21c6728",
"metadata": {},
"outputs": [],
"source": [
"# 安装千问的依赖\n",
"!cd Qwen-7b\n",
"!pip install -r requirements.txt\n",
"\n",
"# 安装 langchain 相关依赖\n",
"!pip install langchain google-search-results wolframalpha arxiv;"
]
},
{
"cell_type": "markdown",
"id": "3b5e6ef9",
"metadata": {
"tags": []
},
"source": [
"## 第零步 - 导入 LangChain 的工具"
]
},
{
"cell_type": "markdown",
"id": "af7d0058",
"metadata": {},
"source": [
"以下引入几个常用 APIs 作为演示:\n",
" - [谷歌搜索API](https://serper.dev/?gclid=EAIaIQobChMIj9eqof7OgAMV44VbCh1F3QZoEAAYASABEgIh3fD_BwE#google-search-api)\n",
" - [WolframAlpha](https://products.wolframalpha.com/api/)\n",
" - arxiv论文搜索\n",
" - python shell (需升级python至3.9以上使用)\n",
"\n",
"注1:此处推荐模仿此案例,细致地构造给千问看的工具描述。\n",
"\n",
"注2:谷歌搜索(SERPAPI), WolframAlpha 需自行申请它们的 API_KEY 后才能使用。"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "07e49b98-9d6c-41f2-9b18-f043f2d13e1a",
"metadata": {},
"outputs": [],
"source": [
"from langchain import SerpAPIWrapper\n",
"from langchain.utilities.wolfram_alpha import WolframAlphaAPIWrapper\n",
"from langchain.utilities import ArxivAPIWrapper\n",
"from langchain.tools.python.tool import PythonAstREPLTool\n",
"\n",
"from typing import Dict, Tuple\n",
"import os\n",
"import json\n",
"\n",
"from transformers import AutoModelForCausalLM, AutoTokenizer\n",
"from transformers.generation import GenerationConfig\n",
"\n",
"# 为了使用谷歌搜索(SERPAPI), WolframAlpha,您需要自行申请它们的 API KEY,然后填入此处\n",
"os.environ['SERPAPI_API_KEY'] = '重要!请在这里填入您的 SERPAPI_API_KEY!'\n",
"os.environ['WOLFRAM_ALPHA_APPID'] = '重要!请在这里填入您的 WOLFRAM_ALPHA_APPID!'\n",
"\n",
"search = SerpAPIWrapper()\n",
"WolframAlpha = WolframAlphaAPIWrapper()\n",
"arxiv = ArxivAPIWrapper()\n",
"python=PythonAstREPLTool()\n",
"\n",
"def tool_wrapper_for_qwen(tool):\n",
" def tool_(query):\n",
" query = json.loads(query)[\"query\"]\n",
" return tool.run(query)\n",
" return tool_\n",
"\n",
"# 以下是给千问看的工具描述:\n",
"TOOLS = [\n",
" {\n",
" 'name_for_human':\n",
" 'google search',\n",
" 'name_for_model':\n",
" 'Search',\n",
" 'description_for_model':\n",
" 'useful for when you need to answer questions about current events.',\n",
" 'parameters': [{\n",
" \"name\": \"query\",\n",
" \"type\": \"string\",\n",
" \"description\": \"search query of google\",\n",
" 'required': True\n",
" }], \n",
" 'tool_api': tool_wrapper_for_qwen(search)\n",
" },\n",
" {\n",
" 'name_for_human':\n",
" 'Wolfram Alpha',\n",
" 'name_for_model':\n",
" 'Math',\n",
" 'description_for_model':\n",
" 'Useful for when you need to answer questions about Math, Science, Technology, Culture, Society and Everyday Life.',\n",
" 'parameters': [{\n",
" \"name\": \"query\",\n",
" \"type\": \"string\",\n",
" \"description\": \"the problem to solved by Wolfram Alpha\",\n",
" 'required': True\n",
" }], \n",
" 'tool_api': tool_wrapper_for_qwen(WolframAlpha)\n",
" }, \n",
" {\n",
" 'name_for_human':\n",
" 'arxiv',\n",
" 'name_for_model':\n",
" 'Arxiv',\n",
" 'description_for_model':\n",
" 'A wrapper around Arxiv.org Useful for when you need to answer questions about Physics, Mathematics, Computer Science, Quantitative Biology, Quantitative Finance, Statistics, Electrical Engineering, and Economics from scientific articles on arxiv.org.',\n",
" 'parameters': [{\n",
" \"name\": \"query\",\n",
" \"type\": \"string\",\n",
" \"description\": \"the document id of arxiv to search\",\n",
" 'required': True\n",
" }], \n",
" 'tool_api': tool_wrapper_for_qwen(arxiv)\n",
" },\n",
" {\n",
" 'name_for_human':\n",
" 'python',\n",
" 'name_for_model':\n",
" 'python',\n",
" 'description_for_model':\n",
" \"A Python shell. Use this to execute python commands. When using this tool, sometimes output is abbreviated - Make sure it does not look abbreviated before using it in your answer. \"\n",
" \"Don't add comments to your python code.\",\n",
" 'parameters': [{\n",
" \"name\": \"query\",\n",
" \"type\": \"string\",\n",
" \"description\": \"a valid python command.\",\n",
" 'required': True\n",
" }],\n",
" 'tool_api': tool_wrapper_for_qwen(python)\n",
" }\n",
"\n",
"]\n"
]
},
{
"cell_type": "markdown",
"id": "b7ec2027",
"metadata": {},
"source": [
"## 第一步:让千问判断调用什么工具,生成工具入参"
]
},
{
"cell_type": "markdown",
"id": "7a50d676",
"metadata": {},
"source": [
"根据prompt模版、query、工具的信息构建prompt"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "4a8feb0e-22f7-4184-9ea0-b864812c9b09",
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Answer the following questions as best you can. You have access to the following tools:\n",
"\n",
"Search: Call this tool to interact with the google search API. What is the google search API useful for? useful for when you need to answer questions about current events. Parameters: [{\"name\": \"query\", \"type\": \"string\", \"description\": \"search query of google\", \"required\": true}] Format the arguments as a JSON object.\n",
"\n",
"Use the following format:\n",
"\n",
"Question: the input question you must answer\n",
"Thought: you should always think about what to do\n",
"Action: the action to take, should be one of [Search]\n",
"Action Input: the input to the action\n",
"Observation: the result of the action\n",
"... (this Thought/Action/Action Input/Observation can be repeated zero or more times)\n",
"Thought: I now know the final answer\n",
"Final Answer: the final answer to the original input question\n",
"\n",
"Begin!\n",
"\n",
"Question: 加拿大2023年人口统计数字是多少?\n"
]
}
],
"source": [
"TOOL_DESC = \"\"\"{name_for_model}: Call this tool to interact with the {name_for_human} API. What is the {name_for_human} API useful for? {description_for_model} Parameters: {parameters} Format the arguments as a JSON object.\"\"\"\n",
"\n",
"REACT_PROMPT = \"\"\"Answer the following questions as best you can. You have access to the following tools:\n",
"\n",
"{tool_descs}\n",
"\n",
"Use the following format:\n",
"\n",
"Question: the input question you must answer\n",
"Thought: you should always think about what to do\n",
"Action: the action to take, should be one of [{tool_names}]\n",
"Action Input: the input to the action\n",
"Observation: the result of the action\n",
"... (this Thought/Action/Action Input/Observation can be repeated zero or more times)\n",
"Thought: I now know the final answer\n",
"Final Answer: the final answer to the original input question\n",
"\n",
"Begin!\n",
"\n",
"Question: {query}\"\"\"\n",
"\n",
"def build_planning_prompt(TOOLS, query):\n",
" tool_descs = []\n",
" tool_names = []\n",
" for info in TOOLS:\n",
" tool_descs.append(\n",
" TOOL_DESC.format(\n",
" name_for_model=info['name_for_model'],\n",
" name_for_human=info['name_for_human'],\n",
" description_for_model=info['description_for_model'],\n",
" parameters=json.dumps(\n",
" info['parameters'], ensure_ascii=False),\n",
" )\n",
" )\n",
" tool_names.append(info['name_for_model'])\n",
" tool_descs = '\\n\\n'.join(tool_descs)\n",
" tool_names = ','.join(tool_names)\n",
"\n",
" prompt = REACT_PROMPT.format(tool_descs=tool_descs, tool_names=tool_names, query=query)\n",
" return prompt\n",
"\n",
"prompt_1 = build_planning_prompt(TOOLS[0:1], query=\"加拿大2023年人口统计数字是多少?\")\n",
"print(prompt_1)"
]
},
{
"cell_type": "markdown",
"id": "6f22b002",
"metadata": {},
"source": [
"将prompt作为输入获得response"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "f71b2577-118c-4ce2-a0ed-a45ec59ea35b",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"A new version of the following files was downloaded from https://huggingface.co/Qwen/Qwen-7B-Chat:\n",
"- tokenization_qwen.py\n",
". Make sure to double-check they do not contain any added malicious code. To avoid downloading new versions of the code file, you can pin a revision.\n",
"A new version of the following files was downloaded from https://huggingface.co/Qwen/Qwen-7B-Chat:\n",
"- configuration_qwen.py\n",
". Make sure to double-check they do not contain any added malicious code. To avoid downloading new versions of the code file, you can pin a revision.\n",
"A new version of the following files was downloaded from https://huggingface.co/Qwen/Qwen-7B-Chat:\n",
"- qwen_generation_utils.py\n",
". Make sure to double-check they do not contain any added malicious code. To avoid downloading new versions of the code file, you can pin a revision.\n",
"A new version of the following files was downloaded from https://huggingface.co/Qwen/Qwen-7B-Chat:\n",
"- modeling_qwen.py\n",
"- qwen_generation_utils.py\n",
". Make sure to double-check they do not contain any added malicious code. To avoid downloading new versions of the code file, you can pin a revision.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "23435445dded44d6951aa6a7b771a963",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading shards: 0%| | 0/8 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"The model is automatically converting to bf16 for faster inference. If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\".\n",
"Try importing flash-attention for faster inference...\n",
"Warning: import flash_attn rotary fail, please install FlashAttention rotary to get higher efficiency https://github.com/Dao-AILab/flash-attention/tree/main/csrc/rotary\n",
"Warning: import flash_attn rms_norm fail, please install FlashAttention layer_norm to get higher efficiency https://github.com/Dao-AILab/flash-attention/tree/main/csrc/layer_norm\n",
"Warning: import flash_attn fail, please install FlashAttention to get higher efficiency https://github.com/Dao-AILab/flash-attention\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "728a1c13c2884291ade4cb4a1edfaaf2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Loading checkpoint shards: 0%| | 0/8 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# 国内连 hugginface 网络不好,这段代码可能需要多重试\n",
"checkpoint = \"Qwen/Qwen-7B-Chat\"\n",
"TOKENIZER = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True)\n",
"MODEL = AutoModelForCausalLM.from_pretrained(checkpoint, device_map=\"auto\", trust_remote_code=True).eval()\n",
"MODEL.generation_config = GenerationConfig.from_pretrained(checkpoint, trust_remote_code=True)\n",
"MODEL.generation_config.do_sample = False # greedy"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "dc0dbd6c-5a0f-44c9-a019-0ec0283ca92d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Thought: 我应该使用搜索工具帮助我完成任务。search api能完成搜索的任务。\n",
"Action: Search\n",
"Action Input: {\"query\": \"加拿大 2023年人口统计数字\"}\n",
"Observation:\n"
]
}
],
"source": [
"stop = [\"Observation:\", \"Observation:\\n\"]\n",
"react_stop_words_tokens = [TOKENIZER.encode(stop_) for stop_ in stop]\n",
"response_1, _ = MODEL.chat(TOKENIZER, prompt_1, history=None, stop_words_ids=react_stop_words_tokens)\n",
"print(response_1)"
]
},
{
"cell_type": "markdown",
"id": "1ebf47ac",
"metadata": {},
"source": [
"## 第二步:从千问的输出中解析需要使用的工具和入参,并调用对应工具"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "1a431670-a1f6-4afd-972f-1cfd6d06e8c9",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"根据加拿大统计局预测,加拿大人口今天(2023年6月16日)预计将超过4000万。 联邦统计局使用模型来实时估计加拿大的人口,该计数模型预计加拿大人口将在北美东部时间今天下午3点前达到4000万。 加拿大的人口增长率目前为2.7%。\n"
]
}
],
"source": [
"def parse_latest_plugin_call(text: str) -> Tuple[str, str]:\n",
" i = text.rfind('\\nAction:')\n",
" j = text.rfind('\\nAction Input:')\n",
" k = text.rfind('\\nObservation:')\n",
" if 0 <= i < j: # If the text has `Action` and `Action input`,\n",
" if k < j: # but does not contain `Observation`,\n",
" # then it is likely that `Observation` is ommited by the LLM,\n",
" # because the output text may have discarded the stop word.\n",
" text = text.rstrip() + '\\nObservation:' # Add it back.\n",
" k = text.rfind('\\nObservation:')\n",
" if 0 <= i < j < k:\n",
" plugin_name = text[i + len('\\nAction:'):j].strip()\n",
" plugin_args = text[j + len('\\nAction Input:'):k].strip()\n",
" return plugin_name, plugin_args\n",
" return '', ''\n",
"\n",
"def use_api(tools, response):\n",
" use_toolname, action_input = parse_latest_plugin_call(response)\n",
" if use_toolname == \"\":\n",
" return \"no tool founds\"\n",
"\n",
" used_tool_meta = list(filter(lambda x: x[\"name_for_model\"] == use_toolname, tools))\n",
" if len(used_tool_meta) == 0:\n",
" return \"no tool founds\"\n",
" \n",
" api_output = used_tool_meta[0][\"tool_api\"](action_input)\n",
" return api_output\n",
"\n",
"api_output = use_api(TOOLS, response_1)\n",
"print(api_output)"
]
},
{
"cell_type": "markdown",
"id": "106a4ba0",
"metadata": {
"tags": []
},
"source": [
"## 第三步:让千问根据工具返回结果继续作答\n",
"拼接上述返回答案,形成新的prompt,并获得生成最终结果"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "a9d4d42d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Answer the following questions as best you can. You have access to the following tools:\n",
"\n",
"Search: Call this tool to interact with the google search API. What is the google search API useful for? useful for when you need to answer questions about current events. Parameters: [{\"name\": \"query\", \"type\": \"string\", \"description\": \"search query of google\", \"required\": true}] Format the arguments as a JSON object.\n",
"\n",
"Use the following format:\n",
"\n",
"Question: the input question you must answer\n",
"Thought: you should always think about what to do\n",
"Action: the action to take, should be one of [Search]\n",
"Action Input: the input to the action\n",
"Observation: the result of the action\n",
"... (this Thought/Action/Action Input/Observation can be repeated zero or more times)\n",
"Thought: I now know the final answer\n",
"Final Answer: the final answer to the original input question\n",
"\n",
"Begin!\n",
"\n",
"Question: 加拿大2023年人口统计数字是多少?Thought: 我应该使用搜索工具帮助我完成任务。search api能完成搜索的任务。\n",
"Action: Search\n",
"Action Input: {\"query\": \"加拿大 2023年人口统计数字\"}\n",
"Observation: 根据加拿大统计局预测,加拿大人口今天(2023年6月16日)预计将超过4000万。 联邦统计局使用模型来实时估计加拿大的人口,该计数模型预计加拿大人口将在北美东部时间今天下午3点前达到4000万。 加拿大的人口增长率目前为2.7%。 Thought: I now know the final answer.\n",
"Final Answer: 加拿大2023年人口统计数字预计为4000万。\n"
]
}
],
"source": [
"prompt_2 = prompt_1 + response_1 + ' ' + api_output\n",
"stop = [\"Observation:\", \"Observation:\\n\"]\n",
"react_stop_words_tokens = [TOKENIZER.encode(stop_) for stop_ in stop]\n",
"response_2, _ = MODEL.chat(TOKENIZER, prompt_2, history=None, stop_words_ids=react_stop_words_tokens)\n",
"print(prompt_2, response_2)"
]
},
{
"cell_type": "markdown",
"id": "0b8da9fd",
"metadata": {},
"source": [
"## 总结 - 串联起整个流程"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "1e51a8ea",
"metadata": {},
"outputs": [],
"source": [
"def main(query, choose_tools):\n",
" prompt = build_planning_prompt(choose_tools, query) # 组织prompt\n",
" print(prompt)\n",
" stop = [\"Observation:\", \"Observation:\\n\"]\n",
" react_stop_words_tokens = [TOKENIZER.encode(stop_) for stop_ in stop]\n",
" response, _ = MODEL.chat(TOKENIZER, prompt, history=None, stop_words_ids=react_stop_words_tokens)\n",
"\n",
" while \"Final Answer:\" not in response: # 出现final Answer时结束\n",
" api_output = use_api(choose_tools, response) # 抽取入参并执行api\n",
" api_output = str(api_output) # 部分api工具返回结果非字符串格式需进行转化后输出\n",
" if \"no tool founds\" == api_output:\n",
" break\n",
" print(\"\\033[32m\" + response + \"\\033[0m\" + \"\\033[34m\" + ' ' + api_output + \"\\033[0m\")\n",
" prompt = prompt + response + ' ' + api_output # 合并api输出\n",
" response, _ = MODEL.chat(TOKENIZER, prompt, history=None, stop_words_ids=react_stop_words_tokens) # 继续生成\n",
"\n",
" print(\"\\033[32m\" + response + \"\\033[0m\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "6dc38a34",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"==========\n",
"Answer the following questions as best you can. You have access to the following tools:\n",
"\n",
"Search: Call this tool to interact with the google search API. What is the google search API useful for? useful for when you need to answer questions about current events. Parameters: [{\"name\": \"query\", \"type\": \"string\", \"description\": \"search query of google\", \"required\": true}] Format the arguments as a JSON object.\n",
"\n",
"Math: Call this tool to interact with the Wolfram Alpha API. What is the Wolfram Alpha API useful for? Useful for when you need to answer questions about Math, Science, Technology, Culture, Society and Everyday Life. Parameters: [{\"name\": \"query\", \"type\": \"string\", \"description\": \"the problem to solved by Wolfram Alpha\", \"required\": true}] Format the arguments as a JSON object.\n",
"\n",
"Arxiv: Call this tool to interact with the arxiv API. What is the arxiv API useful for? A wrapper around Arxiv.org Useful for when you need to answer questions about Physics, Mathematics, Computer Science, Quantitative Biology, Quantitative Finance, Statistics, Electrical Engineering, and Economics from scientific articles on arxiv.org. Parameters: [{\"name\": \"query\", \"type\": \"string\", \"description\": \"the document id of arxiv to search\", \"required\": true}] Format the arguments as a JSON object.\n",
"\n",
"python: Call this tool to interact with the python API. What is the python API useful for? A Python shell. Use this to execute python commands. When using this tool, sometimes output is abbreviated - Make sure it does not look abbreviated before using it in your answer. Don't add comments to your python code. Parameters: [{\"name\": \"query\", \"type\": \"string\", \"description\": \"a valid python command.\", \"required\": true}] Format the arguments as a JSON object.\n",
"\n",
"Use the following format:\n",
"\n",
"Question: the input question you must answer\n",
"Thought: you should always think about what to do\n",
"Action: the action to take, should be one of [Search,Math,Arxiv,python]\n",
"Action Input: the input to the action\n",
"Observation: the result of the action\n",
"... (this Thought/Action/Action Input/Observation can be repeated zero or more times)\n",
"Thought: I now know the final answer\n",
"Final Answer: the final answer to the original input question\n",
"\n",
"Begin!\n",
"\n",
"Question: 加拿大2022年的人口数量有多少?\n",
"\u001B[32mThought: 我应该使用搜索工具帮助我完成任务。search api能完成搜索的任务。\n",
"Action: Search\n",
"Action Input: {\"query\": \"加拿大 2022年人口数量\"}\n",
"Observation:\u001B[0m\u001B[34m 中新社多伦多3月22日电(记者余瑞冬)加拿大统计局3月22日公布的人口统计数据显示,截至今年1月1日,该国估算总人口约为3956.62万人,且2022年的人口增长数创纪录地突破100万人。 加统计局估算,该国人口在2022年增长105.011万人,年增长2.7%,创1957年以来最大增幅。\u001B[0m\n",
"\u001B[32mThought: I now know the final answer.\n",
"Final Answer: 加拿大2022年的人口数量约为3956.62万人。\u001B[0m\n",
"==========\n",
"Answer the following questions as best you can. You have access to the following tools:\n",
"\n",
"Search: Call this tool to interact with the google search API. What is the google search API useful for? useful for when you need to answer questions about current events. Parameters: [{\"name\": \"query\", \"type\": \"string\", \"description\": \"search query of google\", \"required\": true}] Format the arguments as a JSON object.\n",
"\n",
"Math: Call this tool to interact with the Wolfram Alpha API. What is the Wolfram Alpha API useful for? Useful for when you need to answer questions about Math, Science, Technology, Culture, Society and Everyday Life. Parameters: [{\"name\": \"query\", \"type\": \"string\", \"description\": \"the problem to solved by Wolfram Alpha\", \"required\": true}] Format the arguments as a JSON object.\n",
"\n",
"Arxiv: Call this tool to interact with the arxiv API. What is the arxiv API useful for? A wrapper around Arxiv.org Useful for when you need to answer questions about Physics, Mathematics, Computer Science, Quantitative Biology, Quantitative Finance, Statistics, Electrical Engineering, and Economics from scientific articles on arxiv.org. Parameters: [{\"name\": \"query\", \"type\": \"string\", \"description\": \"the document id of arxiv to search\", \"required\": true}] Format the arguments as a JSON object.\n",
"\n",
"python: Call this tool to interact with the python API. What is the python API useful for? A Python shell. Use this to execute python commands. When using this tool, sometimes output is abbreviated - Make sure it does not look abbreviated before using it in your answer. Don't add comments to your python code. Parameters: [{\"name\": \"query\", \"type\": \"string\", \"description\": \"a valid python command.\", \"required\": true}] Format the arguments as a JSON object.\n",
"\n",
"Use the following format:\n",
"\n",
"Question: the input question you must answer\n",
"Thought: you should always think about what to do\n",
"Action: the action to take, should be one of [Search,Math,Arxiv,python]\n",
"Action Input: the input to the action\n",
"Observation: the result of the action\n",
"... (this Thought/Action/Action Input/Observation can be repeated zero or more times)\n",
"Thought: I now know the final answer\n",
"Final Answer: the final answer to the original input question\n",
"\n",
"Begin!\n",
"\n",
"Question: 求解方程 2x+5 = -3x + 7\n",
"\u001B[32mThought: 我应该使用数学工具帮助我完成任务。Wolfram Alpha API应该能完成这项任务。\n",
"Action: Math\n",
"Action Input: {\"query\": \"2x+5 = -3x + 7\"}\n",
"Observation:\u001B[0m\u001B[34m Assumption: 2 x + 5 = -3 x + 7 \n",
"Answer: x = 2/5\u001B[0m\n",
"\u001B[32mThought: I now know the final answer.\n",
"Final Answer: x = 2/5\u001B[0m\n",
"==========\n",
"Answer the following questions as best you can. You have access to the following tools:\n",
"\n",
"Search: Call this tool to interact with the google search API. What is the google search API useful for? useful for when you need to answer questions about current events. Parameters: [{\"name\": \"query\", \"type\": \"string\", \"description\": \"search query of google\", \"required\": true}] Format the arguments as a JSON object.\n",
"\n",
"Math: Call this tool to interact with the Wolfram Alpha API. What is the Wolfram Alpha API useful for? Useful for when you need to answer questions about Math, Science, Technology, Culture, Society and Everyday Life. Parameters: [{\"name\": \"query\", \"type\": \"string\", \"description\": \"the problem to solved by Wolfram Alpha\", \"required\": true}] Format the arguments as a JSON object.\n",
"\n",
"Arxiv: Call this tool to interact with the arxiv API. What is the arxiv API useful for? A wrapper around Arxiv.org Useful for when you need to answer questions about Physics, Mathematics, Computer Science, Quantitative Biology, Quantitative Finance, Statistics, Electrical Engineering, and Economics from scientific articles on arxiv.org. Parameters: [{\"name\": \"query\", \"type\": \"string\", \"description\": \"the document id of arxiv to search\", \"required\": true}] Format the arguments as a JSON object.\n",
"\n",
"python: Call this tool to interact with the python API. What is the python API useful for? A Python shell. Use this to execute python commands. When using this tool, sometimes output is abbreviated - Make sure it does not look abbreviated before using it in your answer. Don't add comments to your python code. Parameters: [{\"name\": \"query\", \"type\": \"string\", \"description\": \"a valid python command.\", \"required\": true}] Format the arguments as a JSON object.\n",
"\n",
"Use the following format:\n",
"\n",
"Question: the input question you must answer\n",
"Thought: you should always think about what to do\n",
"Action: the action to take, should be one of [Search,Math,Arxiv,python]\n",
"Action Input: the input to the action\n",
"Observation: the result of the action\n",
"... (this Thought/Action/Action Input/Observation can be repeated zero or more times)\n",
"Thought: I now know the final answer\n",
"Final Answer: the final answer to the original input question\n",
"\n",
"Begin!\n",
"\n",
"Question: 编号是1605.08386的论文讲了些什么?\n",
"\u001B[32mThought: 我需要使用Arxiv API来搜索这篇论文。\n",
"Action: Arxiv\n",
"Action Input: {\"query\": \"1605.08386\"}\n",
"Observation:\u001B[0m\u001B[34m Published: 2016-05-26\n",
"Title: Heat-bath random walks with Markov bases\n",
"Authors: Caprice Stanley, Tobias Windisch\n",
"Summary: Graphs on lattice points are studied whose edges come from a finite set of\n",
"allowed moves of arbitrary length. We show that the diameter of these graphs on\n",
"fibers of a fixed integer matrix can be bounded from above by a constant. We\n",
"then study the mixing behaviour of heat-bath random walks on these graphs. We\n",
"also state explicit conditions on the set of moves so that the heat-bath random\n",
"walk, a generalization of the Glauber dynamics, is an expander in fixed\n",
"dimension.\u001B[0m\n",
"\u001B[32mThought: I now know the final answer.\n",
"Final Answer: 这篇论文的题目是《热浴随机游走的马尔可夫基》,作者是Caprice Stanley和Tobias Windisch。摘要中提到,该论文研究了在有限的允许移动集合中,由任意长度的边构成的图的边。我们证明了这些图在固定整数矩阵纤维上的直径可以被一个常数所限制。然后,我们研究了热浴随机游走在这类图上的混合行为。我们还给出了一个明确的条件,使得热浴随机游走(一个Glauber动力学的推广)在固定维度下是一个扩张。\u001B[0m\n",
"==========\n",
"Answer the following questions as best you can. You have access to the following tools:\n",
"\n",
"Search: Call this tool to interact with the google search API. What is the google search API useful for? useful for when you need to answer questions about current events. Parameters: [{\"name\": \"query\", \"type\": \"string\", \"description\": \"search query of google\", \"required\": true}] Format the arguments as a JSON object.\n",
"\n",
"Math: Call this tool to interact with the Wolfram Alpha API. What is the Wolfram Alpha API useful for? Useful for when you need to answer questions about Math, Science, Technology, Culture, Society and Everyday Life. Parameters: [{\"name\": \"query\", \"type\": \"string\", \"description\": \"the problem to solved by Wolfram Alpha\", \"required\": true}] Format the arguments as a JSON object.\n",
"\n",
"Arxiv: Call this tool to interact with the arxiv API. What is the arxiv API useful for? A wrapper around Arxiv.org Useful for when you need to answer questions about Physics, Mathematics, Computer Science, Quantitative Biology, Quantitative Finance, Statistics, Electrical Engineering, and Economics from scientific articles on arxiv.org. Parameters: [{\"name\": \"query\", \"type\": \"string\", \"description\": \"the document id of arxiv to search\", \"required\": true}] Format the arguments as a JSON object.\n",
"\n",
"python: Call this tool to interact with the python API. What is the python API useful for? A Python shell. Use this to execute python commands. When using this tool, sometimes output is abbreviated - Make sure it does not look abbreviated before using it in your answer. Don't add comments to your python code. Parameters: [{\"name\": \"query\", \"type\": \"string\", \"description\": \"a valid python command.\", \"required\": true}] Format the arguments as a JSON object.\n",
"\n",
"Use the following format:\n",
"\n",
"Question: the input question you must answer\n",
"Thought: you should always think about what to do\n",
"Action: the action to take, should be one of [Search,Math,Arxiv,python]\n",
"Action Input: the input to the action\n",
"Observation: the result of the action\n",
"... (this Thought/Action/Action Input/Observation can be repeated zero or more times)\n",
"Thought: I now know the final answer\n",
"Final Answer: the final answer to the original input question\n",
"\n",
"Begin!\n",
"\n",
"Question: 使用python对下面的列表进行排序: [2, 4135, 523, 2, 3]\n",
"\u001B[32mThought: 我应该使用python API来执行python命令。\n",
"Action: python\n",
"Action Input: {\"query\": \"sorted([2, 4135, 523, 2, 3])\"}\n",
"Observation:\u001B[0m\u001B[34m [2, 2, 3, 523, 4135]\u001B[0m\n",
"\u001B[32mThought: I now know the final answer.\n",
"Final Answer: 使用python对给定的列表进行排序,结果为 [2, 2, 3, 523, 4135]。\u001B[0m\n"
]
}
],
"source": [
"# 请尽可能控制备选工具数量\n",
"query = \"加拿大2022年的人口数量有多少?\" # 所提问题\n",
"choose_tools = TOOLS # 选择备选工具\n",
"print(\"=\" * 10)\n",
"main(query, choose_tools)\n",
"\n",
"query = \"求解方程 2x+5 = -3x + 7\" # 所提问题\n",
"choose_tools = TOOLS # 选择备选工具\n",
"print(\"=\" * 10)\n",
"main(query, choose_tools)\n",
"\n",
"query = \"编号是1605.08386的论文讲了些什么?\" # 所提问题\n",
"choose_tools = TOOLS # 选择备选工具\n",
"print(\"=\" * 10)\n",
"main(query, choose_tools)\n",
"\n",
"query =\"使用python对下面的列表进行排序: [2, 4135, 523, 2, 3]\"\n",
"choose_tools = TOOLS # 选择备选工具\n",
"print(\"=\" * 10)\n",
"main(query, choose_tools)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|