import time import gradio as gr import matplotlib.cm as cm import numpy as np import plotly.graph_objects as go import spaces import torch from PIL import Image from transformers import AutoImageProcessor, AutoModelForKeypointMatching from transformers.image_utils import to_numpy_array @spaces.GPU def process_images(image1, image2, model_name): """ Process two images and return a plot of the matching keypoints. """ if image1 is None or image2 is None: return None images = [image1, image2] processor = AutoImageProcessor.from_pretrained(model_name) model = AutoModelForKeypointMatching.from_pretrained(model_name, device_map="auto") inputs = processor(images, return_tensors="pt") inputs = inputs.to(model.device) print( f"Model {model_name} is on device: {model.device} and inputs are on device: {inputs['pixel_values'].device}" ) with torch.no_grad(): outputs = model(**inputs) image_sizes = [[(image.height, image.width) for image in images]] outputs = processor.post_process_keypoint_matching( outputs, image_sizes, threshold=0.2 ) output = outputs[0] image1 = to_numpy_array(image1) image2 = to_numpy_array(image2) height0, width0 = image1.shape[:2] height1, width1 = image2.shape[:2] # Create PIL image from numpy array pil_img = Image.fromarray((image1 / 255.0 * 255).astype(np.uint8)) pil_img2 = Image.fromarray((image2 / 255.0 * 255).astype(np.uint8)) fig = go.Figure() # Create colormap (red-yellow-green: red for low scores, green for high scores) colormap = cm.RdYlGn # Get keypoints keypoints0_x, keypoints0_y = output["keypoints0"].unbind(1) keypoints1_x, keypoints1_y = output["keypoints1"].unbind(1) # Add a separate trace for each match (line + markers) to enable highlighting for keypoint0_x, keypoint0_y, keypoint1_x, keypoint1_y, matching_score in zip( keypoints0_x, keypoints0_y, keypoints1_x, keypoints1_y, output["matching_scores"], ): color_val = matching_score.item() rgba_color = colormap(color_val) # Convert to rgba string with transparency color = f"rgba({int(rgba_color[0] * 255)}, {int(rgba_color[1] * 255)}, {int(rgba_color[2] * 255)}, 0.8)" hover_text = ( f"Score: {matching_score.item():.3f}
" f"Point 1: ({keypoint0_x.item():.1f}, {keypoint0_y.item():.1f})
" f"Point 2: ({keypoint1_x.item():.1f}, {keypoint1_y.item():.1f})" ) fig.add_trace( go.Scatter( x=[keypoint0_x.item(), keypoint1_x.item() + width0], y=[keypoint0_y.item(), keypoint1_y.item()], mode="lines+markers", line=dict(color=color, width=2), marker=dict(color=color, size=5, opacity=0.8), hoverinfo="text", hovertext=hover_text, showlegend=False, ) ) # Update layout to use images as background fig.update_layout( xaxis=dict( range=[0, width0 + width1], showgrid=False, zeroline=False, showticklabels=False, ), yaxis=dict( range=[max(height0, height1), 0], showgrid=False, zeroline=False, showticklabels=False, scaleanchor="x", scaleratio=1, ), margin=dict(l=0, r=0, t=0, b=0), autosize=True, images=[ dict( source=pil_img, xref="x", yref="y", x=0, y=0, sizex=width0, sizey=height0, sizing="stretch", opacity=1, layer="below", ), dict( source=pil_img2, xref="x", yref="y", x=width0, y=0, sizex=width1, sizey=height1, sizing="stretch", opacity=1, layer="below", ), ], ) return fig # Create the Gradio interface with gr.Blocks(title="EfficientLoFTR Matching Demo") as demo: gr.Markdown("# EfficientLoFTR Matching Demo") gr.Markdown( "Upload two images and get a side-by-side matching of your images using EfficientLoFTR." ) gr.Markdown(""" ## How to use: 1. Select an EfficientLoFTR model (Original EfficientLoFTR or MatchAnything) 2. Upload two images using the file uploaders below 3. Click the 'Match Images' button 4. View the matched output image below. Higher scores are green, lower scores are red. The app will create a side-by-side matching of your images using EfficientLoFTR. You can also select an example image pair from the dataset below. """) with gr.Row(): # Detector choice selector detector_choice = gr.Radio( choices=[("Original EfficientLoFTR", "zju-community/efficientloftr"), ("MatchAnything", "zju-community/matchanything_eloftr")], value="Original EfficientLoFTR", label="EfficientLoFTR Model", info="Choose between original EfficientLoFTR or MatchAnything" ) with gr.Row(): # Input images on the same row image1 = gr.Image(label="First Image", type="pil") image2 = gr.Image(label="Second Image", type="pil") # Process button process_btn = gr.Button("Match Images", variant="primary") # Output plot output_plot = gr.Plot(label="Matching Results", scale=2) # Connect the function process_btn.click(fn=process_images, inputs=[image1, image2, detector_choice], outputs=[output_plot]) # Add some example usage examples = gr.Dataset( components=[image1, image2], label="Example Image Pairs", samples_per_page=100, samples=[ [ "https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_98169888_3347710852.jpg", "https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_26757027_6717084061.jpg", ], [ "https://raw.githubusercontent.com/cvg/LightGlue/refs/heads/main/assets/DSC_0410.JPG", "https://raw.githubusercontent.com/cvg/LightGlue/refs/heads/main/assets/DSC_0411.JPG", ], [ "https://raw.githubusercontent.com/cvg/LightGlue/refs/heads/main/assets/sacre_coeur1.jpg", "https://raw.githubusercontent.com/cvg/LightGlue/refs/heads/main/assets/sacre_coeur2.jpg", ], [ "https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/piazza_san_marco_06795901_3725050516.jpg", "https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/piazza_san_marco_58751010_4849458397.jpg", ], [ "https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/london_bridge_19481797_2295892421.jpg", "https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/london_bridge_78916675_4568141288.jpg", ], # MatchAnything multi-modality pairs [ "https://huggingface.co/spaces/LittleFrog/MatchAnything/resolve/main/imcui/datasets/multi_modality_pairs/MTV_thermal_vis_1.jpg", "https://huggingface.co/spaces/LittleFrog/MatchAnything/resolve/main/imcui/datasets/multi_modality_pairs/MTV_thermal_vis_2.jpg", ], [ "https://huggingface.co/spaces/LittleFrog/MatchAnything/resolve/main/imcui/datasets/multi_modality_pairs/MTV_thermal_vis_pair2_1.jpg", "https://huggingface.co/spaces/LittleFrog/MatchAnything/resolve/main/imcui/datasets/multi_modality_pairs/MTV_thermal_vis_pair2_2.jpg", ], [ "https://huggingface.co/spaces/LittleFrog/MatchAnything/resolve/main/imcui/datasets/multi_modality_pairs/ct_mr_1.png", "https://huggingface.co/spaces/LittleFrog/MatchAnything/resolve/main/imcui/datasets/multi_modality_pairs/ct_mr_2.png", ], [ "https://huggingface.co/spaces/LittleFrog/MatchAnything/resolve/main/imcui/datasets/multi_modality_pairs/mri_ut_1.jpg", "https://huggingface.co/spaces/LittleFrog/MatchAnything/resolve/main/imcui/datasets/multi_modality_pairs/mri_ut_2.jpg", ], [ "https://huggingface.co/spaces/LittleFrog/MatchAnything/resolve/main/imcui/datasets/multi_modality_pairs/robot_render_1.png", "https://huggingface.co/spaces/LittleFrog/MatchAnything/resolve/main/imcui/datasets/multi_modality_pairs/robot_real_world_2.png", ], [ "https://huggingface.co/spaces/LittleFrog/MatchAnything/resolve/main/imcui/datasets/multi_modality_pairs/thermal_vis_1.jpg", "https://huggingface.co/spaces/LittleFrog/MatchAnything/resolve/main/imcui/datasets/multi_modality_pairs/thermal_vis_2.jpg", ], [ "https://huggingface.co/spaces/LittleFrog/MatchAnything/resolve/main/imcui/datasets/multi_modality_pairs/vis_event_1.png", "https://huggingface.co/spaces/LittleFrog/MatchAnything/resolve/main/imcui/datasets/multi_modality_pairs/vis_event_2.png", ], [ "https://huggingface.co/spaces/LittleFrog/MatchAnything/resolve/main/imcui/datasets/multi_modality_pairs/vis_map_1.jpg", "https://huggingface.co/spaces/LittleFrog/MatchAnything/resolve/main/imcui/datasets/multi_modality_pairs/vis_map_2.jpg", ], [ "https://huggingface.co/spaces/LittleFrog/MatchAnything/resolve/main/imcui/datasets/multi_modality_pairs/vis_map_pair2_1.jpg", "https://huggingface.co/spaces/LittleFrog/MatchAnything/resolve/main/imcui/datasets/multi_modality_pairs/vis_map_pair2_2.jpg", ], [ "https://huggingface.co/spaces/LittleFrog/MatchAnything/resolve/main/imcui/datasets/multi_modality_pairs/vis_thermal_ground_1.png", "https://huggingface.co/spaces/LittleFrog/MatchAnything/resolve/main/imcui/datasets/multi_modality_pairs/vis_thermal_ground_2.png", ], ], ) examples.select(lambda x: (x[0], x[1]), [examples], [image1, image2]) if __name__ == "__main__": demo.launch()