Spaces:
Running
on
Zero
Running
on
Zero
""" | |
An example for enabling precise evaluation validation dataset during training. | |
PLease compare with semseg-pt-v2m2-0-base.py to lean the mechanism. | |
""" | |
_base_ = ["../_base_/default_runtime.py"] | |
# misc custom setting | |
batch_size = 12 # bs: total bs in all gpus | |
mix_prob = 0.8 | |
empty_cache = False | |
enable_amp = True | |
# model settings | |
model = dict( | |
type="DefaultSegmentor", | |
backbone=dict( | |
type="PT-v2m2", | |
in_channels=9, | |
num_classes=20, | |
patch_embed_depth=1, | |
patch_embed_channels=48, | |
patch_embed_groups=6, | |
patch_embed_neighbours=8, | |
enc_depths=(2, 2, 6, 2), | |
enc_channels=(96, 192, 384, 512), | |
enc_groups=(12, 24, 48, 64), | |
enc_neighbours=(16, 16, 16, 16), | |
dec_depths=(1, 1, 1, 1), | |
dec_channels=(48, 96, 192, 384), | |
dec_groups=(6, 12, 24, 48), | |
dec_neighbours=(16, 16, 16, 16), | |
grid_sizes=(0.06, 0.15, 0.375, 0.9375), # x3, x2.5, x2.5, x2.5 | |
attn_qkv_bias=True, | |
pe_multiplier=False, | |
pe_bias=True, | |
attn_drop_rate=0.0, | |
drop_path_rate=0.3, | |
enable_checkpoint=False, | |
unpool_backend="map", # map / interp | |
), | |
criteria=[dict(type="CrossEntropyLoss", loss_weight=1.0, ignore_index=-1)], | |
) | |
# scheduler settings | |
epoch = 900 | |
optimizer = dict(type="AdamW", lr=0.005, weight_decay=0.02) | |
scheduler = dict( | |
type="OneCycleLR", | |
max_lr=optimizer["lr"], | |
pct_start=0.05, | |
anneal_strategy="cos", | |
div_factor=10.0, | |
final_div_factor=1000.0, | |
) | |
# dataset settings | |
dataset_type = "ScanNetDataset" | |
data_root = "data/scannet" | |
data = dict( | |
num_classes=20, | |
ignore_index=-1, | |
names=[ | |
"wall", | |
"floor", | |
"cabinet", | |
"bed", | |
"chair", | |
"sofa", | |
"table", | |
"door", | |
"window", | |
"bookshelf", | |
"picture", | |
"counter", | |
"desk", | |
"curtain", | |
"refridgerator", | |
"shower curtain", | |
"toilet", | |
"sink", | |
"bathtub", | |
"otherfurniture", | |
], | |
train=dict( | |
type=dataset_type, | |
split="train", | |
data_root=data_root, | |
transform=[ | |
dict(type="CenterShift", apply_z=True), | |
dict( | |
type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2 | |
), | |
# dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75), | |
dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5), | |
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=0.5), | |
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=0.5), | |
dict(type="RandomScale", scale=[0.9, 1.1]), | |
# dict(type="RandomShift", shift=[0.2, 0.2, 0.2]), | |
dict(type="RandomFlip", p=0.5), | |
dict(type="RandomJitter", sigma=0.005, clip=0.02), | |
dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]), | |
dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None), | |
dict(type="ChromaticTranslation", p=0.95, ratio=0.05), | |
dict(type="ChromaticJitter", p=0.95, std=0.05), | |
# dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2), | |
# dict(type="RandomColorDrop", p=0.2, color_augment=0.0), | |
dict( | |
type="GridSample", | |
grid_size=0.02, | |
hash_type="fnv", | |
mode="train", | |
return_min_coord=True, | |
), | |
dict(type="SphereCrop", point_max=100000, mode="random"), | |
dict(type="CenterShift", apply_z=False), | |
dict(type="NormalizeColor"), | |
dict(type="ShufflePoint"), | |
dict(type="ToTensor"), | |
dict( | |
type="Collect", | |
keys=("coord", "segment"), | |
feat_keys=("coord", "color", "normal"), | |
), | |
], | |
test_mode=False, | |
), | |
val=dict( | |
type=dataset_type, | |
split="val", | |
data_root=data_root, | |
transform=[ | |
dict(type="CenterShift", apply_z=True), | |
dict( | |
type="Copy", | |
keys_dict={"coord": "origin_coord", "segment": "origin_segment"}, | |
), | |
dict( | |
type="GridSample", | |
grid_size=0.02, | |
hash_type="fnv", | |
mode="train", | |
return_min_coord=True, | |
), | |
# dict(type="SphereCrop", point_max=1000000, mode="center"), | |
dict(type="CenterShift", apply_z=False), | |
dict(type="NormalizeColor"), | |
dict(type="ToTensor"), | |
dict( | |
type="Collect", | |
keys=("coord", "origin_coord", "segment", "origin_segment"), | |
feat_keys=("coord", "color", "normal"), | |
offset_keys_dict=dict(offset="coord", origin_offset="origin_coord"), | |
), | |
], | |
test_mode=False, | |
), | |
test=dict( | |
type=dataset_type, | |
split="val", | |
data_root=data_root, | |
transform=[ | |
dict(type="CenterShift", apply_z=True), | |
dict(type="NormalizeColor"), | |
], | |
test_mode=True, | |
test_cfg=dict( | |
voxelize=dict( | |
type="GridSample", | |
grid_size=0.02, | |
hash_type="fnv", | |
mode="test", | |
keys=("coord", "color", "normal"), | |
), | |
crop=None, | |
post_transform=[ | |
dict(type="CenterShift", apply_z=False), | |
dict(type="ToTensor"), | |
dict( | |
type="Collect", | |
keys=("coord", "index"), | |
feat_keys=("coord", "color", "normal"), | |
), | |
], | |
aug_transform=[ | |
[ | |
dict( | |
type="RandomRotateTargetAngle", | |
angle=[0], | |
axis="z", | |
center=[0, 0, 0], | |
p=1, | |
) | |
], | |
[ | |
dict( | |
type="RandomRotateTargetAngle", | |
angle=[1 / 2], | |
axis="z", | |
center=[0, 0, 0], | |
p=1, | |
) | |
], | |
[ | |
dict( | |
type="RandomRotateTargetAngle", | |
angle=[1], | |
axis="z", | |
center=[0, 0, 0], | |
p=1, | |
) | |
], | |
[ | |
dict( | |
type="RandomRotateTargetAngle", | |
angle=[3 / 2], | |
axis="z", | |
center=[0, 0, 0], | |
p=1, | |
) | |
], | |
[ | |
dict( | |
type="RandomRotateTargetAngle", | |
angle=[0], | |
axis="z", | |
center=[0, 0, 0], | |
p=1, | |
), | |
dict(type="RandomScale", scale=[0.95, 0.95]), | |
], | |
[ | |
dict( | |
type="RandomRotateTargetAngle", | |
angle=[1 / 2], | |
axis="z", | |
center=[0, 0, 0], | |
p=1, | |
), | |
dict(type="RandomScale", scale=[0.95, 0.95]), | |
], | |
[ | |
dict( | |
type="RandomRotateTargetAngle", | |
angle=[1], | |
axis="z", | |
center=[0, 0, 0], | |
p=1, | |
), | |
dict(type="RandomScale", scale=[0.95, 0.95]), | |
], | |
[ | |
dict( | |
type="RandomRotateTargetAngle", | |
angle=[3 / 2], | |
axis="z", | |
center=[0, 0, 0], | |
p=1, | |
), | |
dict(type="RandomScale", scale=[0.95, 0.95]), | |
], | |
[ | |
dict( | |
type="RandomRotateTargetAngle", | |
angle=[0], | |
axis="z", | |
center=[0, 0, 0], | |
p=1, | |
), | |
dict(type="RandomScale", scale=[1.05, 1.05]), | |
], | |
[ | |
dict( | |
type="RandomRotateTargetAngle", | |
angle=[1 / 2], | |
axis="z", | |
center=[0, 0, 0], | |
p=1, | |
), | |
dict(type="RandomScale", scale=[1.05, 1.05]), | |
], | |
[ | |
dict( | |
type="RandomRotateTargetAngle", | |
angle=[1], | |
axis="z", | |
center=[0, 0, 0], | |
p=1, | |
), | |
dict(type="RandomScale", scale=[1.05, 1.05]), | |
], | |
[ | |
dict( | |
type="RandomRotateTargetAngle", | |
angle=[3 / 2], | |
axis="z", | |
center=[0, 0, 0], | |
p=1, | |
), | |
dict(type="RandomScale", scale=[1.05, 1.05]), | |
], | |
[dict(type="RandomFlip", p=1)], | |
], | |
), | |
), | |
) | |