Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -79,39 +79,40 @@ with gr.Blocks(css=css) as demo:
|
|
79 |
|
80 |
cmap = matplotlib.colormaps.get_cmap('Spectral_r')
|
81 |
|
82 |
-
def on_submit(image):
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
115 |
raw_depth.save(tmp_raw_depth.name)
|
116 |
|
117 |
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
|
|
|
79 |
|
80 |
cmap = matplotlib.colormaps.get_cmap('Spectral_r')
|
81 |
|
82 |
+
def on_submit(image):
|
83 |
+
if isinstance(image, np.ndarray):
|
84 |
+
image = Image.fromarray(image)
|
85 |
+
|
86 |
+
original_image = image.copy()
|
87 |
+
|
88 |
+
h, w = image.size # For PIL images, use .size instead of .shape
|
89 |
+
|
90 |
+
depth = predict_depth(image)
|
91 |
+
|
92 |
+
# Debugging info
|
93 |
+
print("Type of depth:", type(depth))
|
94 |
+
print("Shape of depth:", depth.shape if isinstance(depth, np.ndarray) else "N/A")
|
95 |
+
|
96 |
+
if isinstance(depth, np.ndarray):
|
97 |
+
print("Data type of depth:", depth.dtype)
|
98 |
+
|
99 |
+
# Ensure depth is a NumPy array and has the correct shape and dtype
|
100 |
+
if not isinstance(depth, np.ndarray):
|
101 |
+
raise TypeError("Expected a NumPy array for depth, but got {}".format(type(depth)))
|
102 |
+
|
103 |
+
# Adjust the depth array if needed
|
104 |
+
if depth.ndim == 2:
|
105 |
+
# 2D array: expected for grayscale depth maps
|
106 |
+
depth = depth.astype('uint16') # Convert to a suitable type
|
107 |
+
elif depth.ndim == 3 and depth.shape[2] == 1:
|
108 |
+
# 3D array with a single channel (e.g., shape (H, W, 1))
|
109 |
+
depth = depth[:, :, 0].astype('uint16')
|
110 |
+
else:
|
111 |
+
raise ValueError("Unsupported depth array shape: {}".format(depth.shape))
|
112 |
+
|
113 |
+
# Now convert to a PIL Image
|
114 |
+
raw_depth = Image.fromarray(depth)
|
115 |
+
tmp_raw_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
|
116 |
raw_depth.save(tmp_raw_depth.name)
|
117 |
|
118 |
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
|