zino36's picture
Update app.py
f6e95ff verified
import gradio as gr
import cv2
import matplotlib
import numpy as np
import os
from PIL import Image
import mmap
import json
import spaces
import torch
import tempfile
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from transformers import pipeline
from depth_anything_v2.dpt import DepthAnythingV2
css = """
#img-display-container {
max-height: 100vh;
}
#img-display-input {
max-height: 80vh;
}
#img-display-output {
max-height: 80vh;
}
#download {
height: 62px;
}
"""
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}
encoder2name = {
'vits': 'Small',
'vitb': 'Base',
'vitl': 'Large',
'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint
}
encoder = 'vitl'
model_name = encoder2name[encoder]
model = DepthAnythingV2(**model_configs[encoder])
filepath = hf_hub_download(repo_id="depth-anything/Depth-Anything-V2-Metric-Indoor-Large-hf", filename="model.safetensors", repo_type="model")
# Convert to PyTorch tensor
#state_dict = torch.load(filepath, map_location="cpu", weights_only=True)
#state_dict = load_file(filepath)
#model.load_state_dict(state_dict)
#model = model.to(DEVICE).eval()
pipe = pipeline(task="depth-estimation", model="depth-anything/Depth-Anything-V2-Metric-Outdoor-Large-hf", device=DEVICE)
#pipe = pipeline(task="depth-estimation", model="LiheYoung/Depth-Anything", device=DEVICE)
title = "# Depth Anything V2"
description = """Official demo for **Depth Anything V2**.
Please refer to our [paper](https://arxiv.org/abs/2406.09414), [project page](https://depth-anything-v2.github.io), and [github](https://github.com/DepthAnything/Depth-Anything-V2) for more details."""
@spaces.GPU
def predict_depth(image):
return pipe(image)
with gr.Blocks(css=css) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown("### Depth Prediction demo")
with gr.Row():
input_image = gr.Image(label="Input Image", type="pil" ,elem_id='img-display-input')
depth_image_slider = gr.Image(label="Depth Map with Slider View", type="pil", elem_id='img-display-output')
submit = gr.Button(value="Compute Depth")
def on_submit(image):
original_image = image.copy()
result = predict_depth(image)
return result["depth"]
submit.click(on_submit, inputs=[input_image], outputs=[depth_image_slider])
example_files = os.listdir('assets/examples')
example_files.sort()
example_files = [os.path.join('assets/examples', filename) for filename in example_files]
examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[depth_image_slider], fn=on_submit)
if __name__ == '__main__':
demo.queue().launch(share=True)