Spaces:
Running
Running
File size: 13,825 Bytes
ce2269a 0270ffa ce2269a 0270ffa ce2269a 0270ffa ce2269a 0270ffa ce2269a 0270ffa ce2269a 0270ffa ce2269a 0270ffa ce2269a 0270ffa ce2269a 0270ffa ce2269a 0270ffa ce2269a 0270ffa ce2269a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
import gradio as gr
import yfinance as yf
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import feedparser
from textblob import TextBlob
from statsmodels.tsa.holtwinters import ExponentialSmoothing
# Function to fetch cryptocurrency data
def get_crypto_data(symbol, period="30d", interval="1h"):
crypto = yf.Ticker(f"{symbol}-USD")
data = crypto.history(period=period, interval=interval)
return data
# Function to calculate RSI
def calculate_rsi(data, period=14):
delta = data['Close'].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
rs = gain / loss
rsi = 100 - (100 / (1 + rs))
return rsi
# Function to calculate MACD
def calculate_macd(data, short_window=12, long_window=26, signal_window=9):
short_ema = data['Close'].ewm(span=short_window, adjust=False).mean()
long_ema = data['Close'].ewm(span=long_window, adjust=False).mean()
macd = short_ema - long_ema
signal = macd.ewm(span=signal_window, adjust=False).mean()
return macd, signal
# Function to calculate EMA
def calculate_ema(data, period=20):
return data['Close'].ewm(span=period, adjust=False).mean()
# Function to calculate ATR
def calculate_atr(data, period=14):
high_low = data['High'] - data['Low']
high_close = np.abs(data['High'] - data['Close'].shift())
low_close = np.abs(data['Low'] - data['Close'].shift())
true_range = pd.concat([high_low, high_close, low_close], axis=1).max(axis=1)
atr = true_range.rolling(window=period).mean()
return atr
# Function to calculate Stochastic Oscillator
def calculate_stochastic(data, period=14):
high = data['High'].rolling(window=period).max()
low = data['Low'].rolling(window=period).min()
stoch_k = 100 * ((data['Close'] - low) / (high - low))
stoch_d = stoch_k.rolling(window=3).mean()
return stoch_k, stoch_d
# Function to calculate Bollinger Bands
def calculate_bollinger_bands(data, period=20, std_dev=2):
sma = data['Close'].rolling(window=period).mean()
std = data['Close'].rolling(window=period).std()
upper_band = sma + (std * std_dev)
lower_band = sma - (std * std_dev)
return upper_band, lower_band
# Function to calculate On-Balance Volume (OBV)
def calculate_obv(data):
obv = (np.sign(data['Close'].diff()) * data['Volume']).cumsum()
return obv
# Function to calculate Average Directional Index (ADX)
def calculate_adx(data, period=14):
high = data['High']
low = data['Low']
close = data['Close']
# Calculate +DM and -DM
plus_dm = high.diff()
minus_dm = -low.diff()
plus_dm[plus_dm < 0] = 0
minus_dm[minus_dm < 0] = 0
# Calculate True Range (TR)
tr = pd.concat([high - low, abs(high - close.shift()), abs(low - close.shift())], axis=1).max(axis=1)
# Calculate +DI and -DI
plus_di = 100 * (plus_dm.ewm(alpha=1/period).mean() / tr.ewm(alpha=1/period).mean())
minus_di = 100 * (minus_dm.ewm(alpha=1/period).mean() / tr.ewm(alpha=1/period).mean())
# Calculate ADX
dx = 100 * abs(plus_di - minus_di) / (plus_di + minus_di)
adx = dx.ewm(alpha=1/period).mean()
return adx
# Function to calculate Fibonacci Retracement levels
def calculate_fibonacci_levels(data):
high = data['High'].max()
low = data['Low'].min()
diff = high - low
return {
"23.6%": high - diff * 0.236,
"38.2%": high - diff * 0.382,
"50%": high - diff * 0.5,
"61.8%": high - diff * 0.618,
"78.6%": high - diff * 0.786,
}
# Function to calculate probabilities
def calculate_probabilities(data):
# Calculate indicators
data['RSI'] = calculate_rsi(data)
data['MACD'], data['MACD_Signal'] = calculate_macd(data)
data['EMA_50'] = calculate_ema(data, period=50)
data['EMA_200'] = calculate_ema(data, period=200)
data['ATR'] = calculate_atr(data)
data['Stoch_K'], data['Stoch_D'] = calculate_stochastic(data)
data['Upper_Band'], data['Lower_Band'] = calculate_bollinger_bands(data)
data['OBV'] = calculate_obv(data)
data['ADX'] = calculate_adx(data)
# Use the most recent values for predictions
recent_data = data.iloc[-1]
# Calculate probabilities
probabilities = {
"RSI": {"Pump": 0, "Dump": 0},
"MACD": {"Pump": 0, "Dump": 0},
"EMA": {"Pump": 0, "Dump": 0},
"ATR": {"Pump": 0, "Dump": 0},
"Stochastic": {"Pump": 0, "Dump": 0},
"Bollinger Bands": {"Pump": 0, "Dump": 0},
"OBV": {"Pump": 0, "Dump": 0},
"ADX": {"Pump": 0, "Dump": 0},
}
# RSI
rsi = recent_data['RSI']
if rsi < 25:
probabilities["RSI"]["Pump"] = 90 # Strong Pump
elif 25 <= rsi < 30:
probabilities["RSI"]["Pump"] = 60 # Moderate Pump
elif 70 < rsi <= 75:
probabilities["RSI"]["Dump"] = 60 # Moderate Dump
elif rsi > 75:
probabilities["RSI"]["Dump"] = 90 # Strong Dump
# MACD
macd = recent_data['MACD']
macd_signal = recent_data['MACD_Signal']
if macd > macd_signal and macd > 0:
probabilities["MACD"]["Pump"] = 90 # Strong Pump
elif macd > macd_signal and macd <= 0:
probabilities["MACD"]["Pump"] = 60 # Moderate Pump
elif macd < macd_signal and macd >= 0:
probabilities["MACD"]["Dump"] = 60 # Moderate Dump
elif macd < macd_signal and macd < 0:
probabilities["MACD"]["Dump"] = 90 # Strong Dump
# EMA
ema_short = recent_data['EMA_50']
ema_long = recent_data['EMA_200']
close = recent_data['Close']
if ema_short > ema_long and close > ema_short:
probabilities["EMA"]["Pump"] = 90 # Strong Pump
elif ema_short > ema_long and close <= ema_short:
probabilities["EMA"]["Pump"] = 60 # Moderate Pump
elif ema_short < ema_long and close >= ema_short:
probabilities["EMA"]["Dump"] = 60 # Moderate Dump
elif ema_short < ema_long and close < ema_short:
probabilities["EMA"]["Dump"] = 90 # Strong Dump
# ATR
atr = recent_data['ATR']
if atr > 100:
probabilities["ATR"]["Pump"] = 90 # Strong Pump
elif 50 < atr <= 100:
probabilities["ATR"]["Pump"] = 60 # Moderate Pump
elif -100 <= atr < -50:
probabilities["ATR"]["Dump"] = 60 # Moderate Dump
elif atr < -100:
probabilities["ATR"]["Dump"] = 90 # Strong Dump
# Stochastic Oscillator
stoch_k = recent_data['Stoch_K']
stoch_d = recent_data['Stoch_D']
if stoch_k < 20 and stoch_d < 20:
probabilities["Stochastic"]["Pump"] = 90 # Strong Pump
elif 20 <= stoch_k < 30 and 20 <= stoch_d < 30:
probabilities["Stochastic"]["Pump"] = 60 # Moderate Pump
elif 70 < stoch_k <= 80 and 70 < stoch_d <= 80:
probabilities["Stochastic"]["Dump"] = 60 # Moderate Dump
elif stoch_k > 80 and stoch_d > 80:
probabilities["Stochastic"]["Dump"] = 90 # Strong Dump
# Bollinger Bands
close = recent_data['Close']
upper_band = recent_data['Upper_Band']
lower_band = recent_data['Lower_Band']
if close <= lower_band:
probabilities["Bollinger Bands"]["Pump"] = 90 # Strong Pump
elif lower_band < close <= lower_band * 1.05:
probabilities["Bollinger Bands"]["Pump"] = 60 # Moderate Pump
elif upper_band * 0.95 <= close < upper_band:
probabilities["Bollinger Bands"]["Dump"] = 60 # Moderate Dump
elif close >= upper_band:
probabilities["Bollinger Bands"]["Dump"] = 90 # Strong Dump
# OBV
obv = recent_data['OBV']
if obv > 100000:
probabilities["OBV"]["Pump"] = 90 # Strong Pump
elif 50000 < obv <= 100000:
probabilities["OBV"]["Pump"] = 60 # Moderate Pump
elif -100000 <= obv < -50000:
probabilities["OBV"]["Dump"] = 60 # Moderate Dump
elif obv < -100000:
probabilities["OBV"]["Dump"] = 90 # Strong Dump
# ADX
adx = recent_data['ADX']
if adx > 25:
probabilities["ADX"]["Pump"] = 90 # Strong Pump
elif 20 < adx <= 25:
probabilities["ADX"]["Pump"] = 60 # Moderate Pump
elif 15 < adx <= 20:
probabilities["ADX"]["Dump"] = 60 # Moderate Dump
elif adx <= 15:
probabilities["ADX"]["Dump"] = 90 # Strong Dump
return probabilities, recent_data
# Function to predict future prices using Exponential Smoothing
def predict_price(data, days=7):
try:
# Prepare data for Exponential Smoothing
df = data[['Close']]
# Train the model
model = ExponentialSmoothing(df, trend="add", seasonal="add", seasonal_periods=7)
fit = model.fit()
# Make future predictions
forecast = fit.forecast(steps=days)
# Format predictions with dates
last_date = data.index[-1]
dates = pd.date_range(start=last_date + timedelta(days=1), periods=days)
forecast_df = pd.DataFrame({"Date": dates, "Price": forecast})
forecast_df["Date"] = forecast_df["Date"].dt.strftime("%B %d") # Format as "Month Day"
forecast_df["Price"] = forecast_df["Price"].round(2)
return forecast_df
except Exception as e:
return f"Error predicting prices: {e}"
# Function to fetch news from top 5 crypto news sites and perform sentiment analysis
def fetch_crypto_news(symbol):
try:
# List of RSS feeds for top 5 crypto news sites
rss_feeds = [
"https://coindesk.com/feed/",
"https://cointelegraph.com/rss",
"https://cryptoslate.com/feed/",
"https://www.newsbtc.com/feed/",
"https://news.bitcoin.com/feed/"
]
news_items = []
for feed_url in rss_feeds:
feed = feedparser.parse(feed_url)
for entry in feed.entries[:5]: # Limit to 5 articles per site
if symbol.lower() in entry.title.lower() or symbol.lower() in entry.summary.lower():
# Perform sentiment analysis on the article title
analysis = TextBlob(entry.title)
sentiment = "Bullish" if analysis.sentiment.polarity > 0 else "Bearish" if analysis.sentiment.polarity < 0 else "Neutral"
# Format the date as "Month Day"
published_date = datetime.strptime(entry.published, "%a, %d %b %Y %H:%M:%S %z").strftime("%B %d")
# Extract website name from the link
website = entry.link.split("//")[1].split("/")[0]
news_items.append({
"title": entry.title,
"website": website,
"sentiment": sentiment,
"published": published_date,
})
return news_items[:5] # Return top 5 articles
except Exception as e:
return f"Error fetching crypto news: {e}"
# Gradio Interface
def crypto_app(symbol):
if symbol:
# Fetch data
data = get_crypto_data(symbol)
if data.empty:
return f"No data found for {symbol}. Please check the symbol and try again."
else:
# Ensure the DataFrame has enough rows
if len(data) < 20:
return f"Not enough data to calculate indicators. Only {len(data)} rows available. Please try a longer period."
else:
# Calculate probabilities
probabilities, recent_data = calculate_probabilities(data)
# Predict future prices
price_predictions = predict_price(data)
# Fetch crypto news and sentiment
news_items = fetch_crypto_news(symbol)
# Calculate Fibonacci Retracement levels
fib_levels = calculate_fibonacci_levels(data)
# Prepare output
output = f"**{symbol} Pump/Dump Probabilities:**\n"
for indicator, values in probabilities.items():
output += f"- **{indicator}**: Pump: {values['Pump']:.2f}%, Dump: {values['Dump']:.2f}%\n"
output += "\n**Price Predictions (Next 7 Days):**\n"
if isinstance(price_predictions, pd.DataFrame):
output += price_predictions.to_string(index=False)
else:
output += price_predictions
output += "\n\n**Fibonacci Retracement Levels:**\n"
for level, price in fib_levels.items():
output += f"- **{level}**: ${price:.2f}\n"
output += "\n**Latest Crypto News Sentiment:**\n"
if isinstance(news_items, list):
for news in news_items:
output += f"- **{news['title']}** ({news['sentiment']}) - {news['website']}\n"
else:
output += news_items
return output
else:
return "Please enter a cryptocurrency symbol."
# Gradio Interface with Background Image
iface = gr.Interface(
fn=crypto_app,
inputs=gr.Textbox(placeholder="Enter cryptocurrency symbol (e.g., ETH, BTC)"),
outputs="text",
title="Crypto AI Agent ππ",
description="This app provides technical indicator-based predictions, price forecasts, and sentiment analysis for any cryptocurrency.",
theme="default", # Use a theme that supports custom backgrounds
css=".gradio-container { background-image: url('https://example.com/crypto-background.jpg'); background-size: cover; }",
)
iface.launch() |