zidsi commited on
Commit
d00a5bc
·
1 Parent(s): 73ab3e3

transformers

Browse files
Files changed (1) hide show
  1. app.py +15 -37
app.py CHANGED
@@ -1,51 +1,29 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
3
  import os
4
  HF_TOKEN = os.getenv('HF_TOKEN')
5
- """
6
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
7
- """
8
- client = InferenceClient("zidsi/SLlamica_PT4SFT_v2",token=HF_TOKEN)
9
-
10
-
11
- def respond(
12
- message,
13
- history: list[tuple[str, str]],
14
- system_message,
15
- max_tokens,
16
- temperature,
17
- top_p,
18
- ):
19
- messages = [{"role": "system", "content": system_message}]
20
-
21
- for val in history:
22
- if val[0]:
23
- messages.append({"role": "user", "content": val[0]})
24
- if val[1]:
25
- messages.append({"role": "assistant", "content": val[1]})
26
-
27
- messages.append({"role": "user", "content": message})
28
-
29
- response = ""
30
-
31
- for message in client.chat_completion(
32
- messages,
33
- max_tokens=max_tokens,
34
- stream=True,
35
- temperature=temperature,
36
- top_p=top_p,
37
- ):
38
- token = message.choices[0].delta.content
39
 
40
- response += token
41
- yield response
 
 
42
 
 
 
 
 
 
 
 
 
43
 
44
  """
45
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
46
  """
47
  demo = gr.ChatInterface(
48
- respond,
49
  additional_inputs=[
50
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
51
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ from transformers import pipeline
4
+
5
  import os
6
  HF_TOKEN = os.getenv('HF_TOKEN')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
+ checkpoint = "zidsi/SLlamica_PT4SFT_v2"
9
+ device = "cuda" # "cuda" or "cpu"
10
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint,token=HF_TOKEN)
11
+ model = AutoModelForCausalLM.from_pretrained(checkpoint,token=HF_TOKEN).to(device)
12
 
13
+ def predict(message, history):
14
+ history.append({"role": "user", "content": message})
15
+ input_text = tokenizer.apply_chat_template(history, tokenize=False)
16
+ inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
17
+ outputs = model.generate(inputs, max_new_tokens=100, temperature=0.2, top_p=0.9, do_sample=True)
18
+ decoded = tokenizer.decode(outputs[0])
19
+ response = decoded.split("<|im_start|>assistant\n")[-1].split("<|im_end|>")[0]
20
+ return response
21
 
22
  """
23
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
24
  """
25
  demo = gr.ChatInterface(
26
+ predict, type="messages",
27
  additional_inputs=[
28
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
29
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),