Spaces:
Sleeping
Sleeping
transformers
Browse files
app.py
CHANGED
@@ -1,51 +1,29 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
3 |
import os
|
4 |
HF_TOKEN = os.getenv('HF_TOKEN')
|
5 |
-
"""
|
6 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
7 |
-
"""
|
8 |
-
client = InferenceClient("zidsi/SLlamica_PT4SFT_v2",token=HF_TOKEN)
|
9 |
-
|
10 |
-
|
11 |
-
def respond(
|
12 |
-
message,
|
13 |
-
history: list[tuple[str, str]],
|
14 |
-
system_message,
|
15 |
-
max_tokens,
|
16 |
-
temperature,
|
17 |
-
top_p,
|
18 |
-
):
|
19 |
-
messages = [{"role": "system", "content": system_message}]
|
20 |
-
|
21 |
-
for val in history:
|
22 |
-
if val[0]:
|
23 |
-
messages.append({"role": "user", "content": val[0]})
|
24 |
-
if val[1]:
|
25 |
-
messages.append({"role": "assistant", "content": val[1]})
|
26 |
-
|
27 |
-
messages.append({"role": "user", "content": message})
|
28 |
-
|
29 |
-
response = ""
|
30 |
-
|
31 |
-
for message in client.chat_completion(
|
32 |
-
messages,
|
33 |
-
max_tokens=max_tokens,
|
34 |
-
stream=True,
|
35 |
-
temperature=temperature,
|
36 |
-
top_p=top_p,
|
37 |
-
):
|
38 |
-
token = message.choices[0].delta.content
|
39 |
|
40 |
-
|
41 |
-
|
|
|
|
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
"""
|
45 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
46 |
"""
|
47 |
demo = gr.ChatInterface(
|
48 |
-
|
49 |
additional_inputs=[
|
50 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
51 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
from transformers import pipeline
|
4 |
+
|
5 |
import os
|
6 |
HF_TOKEN = os.getenv('HF_TOKEN')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
checkpoint = "zidsi/SLlamica_PT4SFT_v2"
|
9 |
+
device = "cuda" # "cuda" or "cpu"
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint,token=HF_TOKEN)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint,token=HF_TOKEN).to(device)
|
12 |
|
13 |
+
def predict(message, history):
|
14 |
+
history.append({"role": "user", "content": message})
|
15 |
+
input_text = tokenizer.apply_chat_template(history, tokenize=False)
|
16 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
17 |
+
outputs = model.generate(inputs, max_new_tokens=100, temperature=0.2, top_p=0.9, do_sample=True)
|
18 |
+
decoded = tokenizer.decode(outputs[0])
|
19 |
+
response = decoded.split("<|im_start|>assistant\n")[-1].split("<|im_end|>")[0]
|
20 |
+
return response
|
21 |
|
22 |
"""
|
23 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
24 |
"""
|
25 |
demo = gr.ChatInterface(
|
26 |
+
predict, type="messages",
|
27 |
additional_inputs=[
|
28 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
29 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|