Spaces:
Sleeping
Sleeping
add params
Browse files
app.py
CHANGED
@@ -7,20 +7,20 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
|
7 |
import os
|
8 |
HF_TOKEN = os.getenv('HF_TOKEN')
|
9 |
|
10 |
-
checkpoint = "zidsi/
|
11 |
device = "cuda" # "cuda" or "cpu"
|
12 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint,token=HF_TOKEN)
|
13 |
model = AutoModelForCausalLM.from_pretrained(checkpoint,token=HF_TOKEN)
|
14 |
model.to(device)
|
15 |
|
16 |
@spaces.GPU
|
17 |
-
def predict(message, history):
|
18 |
history.append({"role": "user", "content": message})
|
19 |
input_text = tokenizer.apply_chat_template(history, tokenize=False)
|
20 |
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
21 |
# Use TextStreamer for streaming response
|
22 |
-
streamer = TextStreamer(tokenizer)
|
23 |
-
outputs = model.generate(inputs, max_new_tokens=
|
24 |
# Despite returning the usual output, the streamer will also print the generated text to stdout.
|
25 |
|
26 |
decoded = tokenizer.decode(outputs[0])
|
@@ -32,20 +32,19 @@ For information on how to customize the ChatInterface, peruse the gradio docs: h
|
|
32 |
"""
|
33 |
demo = gr.ChatInterface(
|
34 |
predict, type="messages",
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
)
|
37 |
-
|
38 |
-
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
39 |
-
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
40 |
-
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
41 |
-
# gr.Slider(
|
42 |
-
# minimum=0.1,
|
43 |
-
# maximum=1.0,
|
44 |
-
# value=0.95,
|
45 |
-
# step=0.05,
|
46 |
-
# label="Top-p (nucleus sampling)",
|
47 |
-
# ),
|
48 |
-
# ],
|
49 |
|
50 |
if __name__ == "__main__":
|
51 |
demo.launch()
|
|
|
7 |
import os
|
8 |
HF_TOKEN = os.getenv('HF_TOKEN')
|
9 |
|
10 |
+
checkpoint = "zidsi/SLlamica_PT4SFT_v1"
|
11 |
device = "cuda" # "cuda" or "cpu"
|
12 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint,token=HF_TOKEN)
|
13 |
model = AutoModelForCausalLM.from_pretrained(checkpoint,token=HF_TOKEN)
|
14 |
model.to(device)
|
15 |
|
16 |
@spaces.GPU
|
17 |
+
def predict(message, history,max_new_tokens,temperature,top_p):
|
18 |
history.append({"role": "user", "content": message})
|
19 |
input_text = tokenizer.apply_chat_template(history, tokenize=False)
|
20 |
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
21 |
# Use TextStreamer for streaming response
|
22 |
+
# streamer = TextStreamer(tokenizer)
|
23 |
+
outputs = model.generate(inputs, max_new_tokens=max_new_tokens, temperature=temperature, top_p=top_p, do_sample=True)
|
24 |
# Despite returning the usual output, the streamer will also print the generated text to stdout.
|
25 |
|
26 |
decoded = tokenizer.decode(outputs[0])
|
|
|
32 |
"""
|
33 |
demo = gr.ChatInterface(
|
34 |
predict, type="messages",
|
35 |
+
additional_inputs=[
|
36 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
37 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
38 |
+
gr.Slider(
|
39 |
+
minimum=0.1,
|
40 |
+
maximum=1.0,
|
41 |
+
value=0.95,
|
42 |
+
step=0.05,
|
43 |
+
label="Top-p (nucleus sampling)",
|
44 |
+
),
|
45 |
+
],
|
46 |
)
|
47 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
if __name__ == "__main__":
|
50 |
demo.launch()
|