Spaces:
Running
Running
from fastapi import ( | |
FastAPI, | |
Depends, | |
HTTPException, | |
status, | |
UploadFile, | |
File, | |
Form, | |
) | |
from fastapi.middleware.cors import CORSMiddleware | |
import os, shutil, logging, re | |
from pathlib import Path | |
from typing import List | |
from chromadb.utils.batch_utils import create_batches | |
from langchain_community.document_loaders import ( | |
WebBaseLoader, | |
TextLoader, | |
PyPDFLoader, | |
CSVLoader, | |
BSHTMLLoader, | |
Docx2txtLoader, | |
UnstructuredEPubLoader, | |
UnstructuredWordDocumentLoader, | |
UnstructuredMarkdownLoader, | |
UnstructuredXMLLoader, | |
UnstructuredRSTLoader, | |
UnstructuredExcelLoader, | |
UnstructuredPowerPointLoader, | |
YoutubeLoader, | |
) | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
import validators | |
import urllib.parse | |
import socket | |
from pydantic import BaseModel | |
from typing import Optional | |
import mimetypes | |
import uuid | |
import json | |
import sentence_transformers | |
from apps.web.models.documents import ( | |
Documents, | |
DocumentForm, | |
DocumentResponse, | |
) | |
from apps.rag.utils import ( | |
get_model_path, | |
get_embedding_function, | |
query_doc, | |
query_doc_with_hybrid_search, | |
query_collection, | |
query_collection_with_hybrid_search, | |
) | |
from utils.misc import ( | |
calculate_sha256, | |
calculate_sha256_string, | |
sanitize_filename, | |
extract_folders_after_data_docs, | |
) | |
from utils.utils import get_current_user, get_admin_user | |
from config import ( | |
ENV, | |
SRC_LOG_LEVELS, | |
UPLOAD_DIR, | |
DOCS_DIR, | |
RAG_TOP_K, | |
RAG_RELEVANCE_THRESHOLD, | |
RAG_EMBEDDING_ENGINE, | |
RAG_EMBEDDING_MODEL, | |
RAG_EMBEDDING_MODEL_AUTO_UPDATE, | |
RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE, | |
ENABLE_RAG_HYBRID_SEARCH, | |
ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION, | |
RAG_RERANKING_MODEL, | |
PDF_EXTRACT_IMAGES, | |
RAG_RERANKING_MODEL_AUTO_UPDATE, | |
RAG_RERANKING_MODEL_TRUST_REMOTE_CODE, | |
RAG_OPENAI_API_BASE_URL, | |
RAG_OPENAI_API_KEY, | |
DEVICE_TYPE, | |
CHROMA_CLIENT, | |
CHUNK_SIZE, | |
CHUNK_OVERLAP, | |
RAG_TEMPLATE, | |
ENABLE_RAG_LOCAL_WEB_FETCH, | |
YOUTUBE_LOADER_LANGUAGE, | |
AppConfig, | |
) | |
from constants import ERROR_MESSAGES | |
log = logging.getLogger(__name__) | |
log.setLevel(SRC_LOG_LEVELS["RAG"]) | |
app = FastAPI() | |
app.state.config = AppConfig() | |
app.state.config.TOP_K = RAG_TOP_K | |
app.state.config.RELEVANCE_THRESHOLD = RAG_RELEVANCE_THRESHOLD | |
app.state.config.ENABLE_RAG_HYBRID_SEARCH = ENABLE_RAG_HYBRID_SEARCH | |
app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION = ( | |
ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION | |
) | |
app.state.config.CHUNK_SIZE = CHUNK_SIZE | |
app.state.config.CHUNK_OVERLAP = CHUNK_OVERLAP | |
app.state.config.RAG_EMBEDDING_ENGINE = RAG_EMBEDDING_ENGINE | |
app.state.config.RAG_EMBEDDING_MODEL = RAG_EMBEDDING_MODEL | |
app.state.config.RAG_RERANKING_MODEL = RAG_RERANKING_MODEL | |
app.state.config.RAG_TEMPLATE = RAG_TEMPLATE | |
app.state.config.OPENAI_API_BASE_URL = RAG_OPENAI_API_BASE_URL | |
app.state.config.OPENAI_API_KEY = RAG_OPENAI_API_KEY | |
app.state.config.PDF_EXTRACT_IMAGES = PDF_EXTRACT_IMAGES | |
app.state.config.YOUTUBE_LOADER_LANGUAGE = YOUTUBE_LOADER_LANGUAGE | |
app.state.YOUTUBE_LOADER_TRANSLATION = None | |
def update_embedding_model( | |
embedding_model: str, | |
update_model: bool = False, | |
): | |
if embedding_model and app.state.config.RAG_EMBEDDING_ENGINE == "": | |
app.state.sentence_transformer_ef = sentence_transformers.SentenceTransformer( | |
get_model_path(embedding_model, update_model), | |
device=DEVICE_TYPE, | |
trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE, | |
) | |
else: | |
app.state.sentence_transformer_ef = None | |
def update_reranking_model( | |
reranking_model: str, | |
update_model: bool = False, | |
): | |
if reranking_model: | |
app.state.sentence_transformer_rf = sentence_transformers.CrossEncoder( | |
get_model_path(reranking_model, update_model), | |
device=DEVICE_TYPE, | |
trust_remote_code=RAG_RERANKING_MODEL_TRUST_REMOTE_CODE, | |
) | |
else: | |
app.state.sentence_transformer_rf = None | |
update_embedding_model( | |
app.state.config.RAG_EMBEDDING_MODEL, | |
RAG_EMBEDDING_MODEL_AUTO_UPDATE, | |
) | |
update_reranking_model( | |
app.state.config.RAG_RERANKING_MODEL, | |
RAG_RERANKING_MODEL_AUTO_UPDATE, | |
) | |
app.state.EMBEDDING_FUNCTION = get_embedding_function( | |
app.state.config.RAG_EMBEDDING_ENGINE, | |
app.state.config.RAG_EMBEDDING_MODEL, | |
app.state.sentence_transformer_ef, | |
app.state.config.OPENAI_API_KEY, | |
app.state.config.OPENAI_API_BASE_URL, | |
) | |
origins = ["*"] | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=origins, | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
class CollectionNameForm(BaseModel): | |
collection_name: Optional[str] = "test" | |
class UrlForm(CollectionNameForm): | |
url: str | |
async def get_status(): | |
return { | |
"status": True, | |
"chunk_size": app.state.config.CHUNK_SIZE, | |
"chunk_overlap": app.state.config.CHUNK_OVERLAP, | |
"template": app.state.config.RAG_TEMPLATE, | |
"embedding_engine": app.state.config.RAG_EMBEDDING_ENGINE, | |
"embedding_model": app.state.config.RAG_EMBEDDING_MODEL, | |
"reranking_model": app.state.config.RAG_RERANKING_MODEL, | |
} | |
async def get_embedding_config(user=Depends(get_admin_user)): | |
return { | |
"status": True, | |
"embedding_engine": app.state.config.RAG_EMBEDDING_ENGINE, | |
"embedding_model": app.state.config.RAG_EMBEDDING_MODEL, | |
"openai_config": { | |
"url": app.state.config.OPENAI_API_BASE_URL, | |
"key": app.state.config.OPENAI_API_KEY, | |
}, | |
} | |
async def get_reraanking_config(user=Depends(get_admin_user)): | |
return { | |
"status": True, | |
"reranking_model": app.state.config.RAG_RERANKING_MODEL, | |
} | |
class OpenAIConfigForm(BaseModel): | |
url: str | |
key: str | |
class EmbeddingModelUpdateForm(BaseModel): | |
openai_config: Optional[OpenAIConfigForm] = None | |
embedding_engine: str | |
embedding_model: str | |
async def update_embedding_config( | |
form_data: EmbeddingModelUpdateForm, user=Depends(get_admin_user) | |
): | |
log.info( | |
f"Updating embedding model: {app.state.config.RAG_EMBEDDING_MODEL} to {form_data.embedding_model}" | |
) | |
try: | |
app.state.config.RAG_EMBEDDING_ENGINE = form_data.embedding_engine | |
app.state.config.RAG_EMBEDDING_MODEL = form_data.embedding_model | |
if app.state.config.RAG_EMBEDDING_ENGINE in ["ollama", "openai"]: | |
if form_data.openai_config != None: | |
app.state.config.OPENAI_API_BASE_URL = form_data.openai_config.url | |
app.state.config.OPENAI_API_KEY = form_data.openai_config.key | |
update_embedding_model(app.state.config.RAG_EMBEDDING_MODEL) | |
app.state.EMBEDDING_FUNCTION = get_embedding_function( | |
app.state.config.RAG_EMBEDDING_ENGINE, | |
app.state.config.RAG_EMBEDDING_MODEL, | |
app.state.sentence_transformer_ef, | |
app.state.config.OPENAI_API_KEY, | |
app.state.config.OPENAI_API_BASE_URL, | |
) | |
return { | |
"status": True, | |
"embedding_engine": app.state.config.RAG_EMBEDDING_ENGINE, | |
"embedding_model": app.state.config.RAG_EMBEDDING_MODEL, | |
"openai_config": { | |
"url": app.state.config.OPENAI_API_BASE_URL, | |
"key": app.state.config.OPENAI_API_KEY, | |
}, | |
} | |
except Exception as e: | |
log.exception(f"Problem updating embedding model: {e}") | |
raise HTTPException( | |
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, | |
detail=ERROR_MESSAGES.DEFAULT(e), | |
) | |
class RerankingModelUpdateForm(BaseModel): | |
reranking_model: str | |
async def update_reranking_config( | |
form_data: RerankingModelUpdateForm, user=Depends(get_admin_user) | |
): | |
log.info( | |
f"Updating reranking model: {app.state.config.RAG_RERANKING_MODEL} to {form_data.reranking_model}" | |
) | |
try: | |
app.state.config.RAG_RERANKING_MODEL = form_data.reranking_model | |
update_reranking_model(app.state.config.RAG_RERANKING_MODEL), True | |
return { | |
"status": True, | |
"reranking_model": app.state.config.RAG_RERANKING_MODEL, | |
} | |
except Exception as e: | |
log.exception(f"Problem updating reranking model: {e}") | |
raise HTTPException( | |
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, | |
detail=ERROR_MESSAGES.DEFAULT(e), | |
) | |
async def get_rag_config(user=Depends(get_admin_user)): | |
return { | |
"status": True, | |
"pdf_extract_images": app.state.config.PDF_EXTRACT_IMAGES, | |
"chunk": { | |
"chunk_size": app.state.config.CHUNK_SIZE, | |
"chunk_overlap": app.state.config.CHUNK_OVERLAP, | |
}, | |
"web_loader_ssl_verification": app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION, | |
"youtube": { | |
"language": app.state.config.YOUTUBE_LOADER_LANGUAGE, | |
"translation": app.state.YOUTUBE_LOADER_TRANSLATION, | |
}, | |
} | |
class ChunkParamUpdateForm(BaseModel): | |
chunk_size: int | |
chunk_overlap: int | |
class YoutubeLoaderConfig(BaseModel): | |
language: List[str] | |
translation: Optional[str] = None | |
class ConfigUpdateForm(BaseModel): | |
pdf_extract_images: Optional[bool] = None | |
chunk: Optional[ChunkParamUpdateForm] = None | |
web_loader_ssl_verification: Optional[bool] = None | |
youtube: Optional[YoutubeLoaderConfig] = None | |
async def update_rag_config(form_data: ConfigUpdateForm, user=Depends(get_admin_user)): | |
app.state.config.PDF_EXTRACT_IMAGES = ( | |
form_data.pdf_extract_images | |
if form_data.pdf_extract_images is not None | |
else app.state.config.PDF_EXTRACT_IMAGES | |
) | |
app.state.config.CHUNK_SIZE = ( | |
form_data.chunk.chunk_size | |
if form_data.chunk is not None | |
else app.state.config.CHUNK_SIZE | |
) | |
app.state.config.CHUNK_OVERLAP = ( | |
form_data.chunk.chunk_overlap | |
if form_data.chunk is not None | |
else app.state.config.CHUNK_OVERLAP | |
) | |
app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION = ( | |
form_data.web_loader_ssl_verification | |
if form_data.web_loader_ssl_verification != None | |
else app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION | |
) | |
app.state.config.YOUTUBE_LOADER_LANGUAGE = ( | |
form_data.youtube.language | |
if form_data.youtube is not None | |
else app.state.config.YOUTUBE_LOADER_LANGUAGE | |
) | |
app.state.YOUTUBE_LOADER_TRANSLATION = ( | |
form_data.youtube.translation | |
if form_data.youtube is not None | |
else app.state.YOUTUBE_LOADER_TRANSLATION | |
) | |
return { | |
"status": True, | |
"pdf_extract_images": app.state.config.PDF_EXTRACT_IMAGES, | |
"chunk": { | |
"chunk_size": app.state.config.CHUNK_SIZE, | |
"chunk_overlap": app.state.config.CHUNK_OVERLAP, | |
}, | |
"web_loader_ssl_verification": app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION, | |
"youtube": { | |
"language": app.state.config.YOUTUBE_LOADER_LANGUAGE, | |
"translation": app.state.YOUTUBE_LOADER_TRANSLATION, | |
}, | |
} | |
async def get_rag_template(user=Depends(get_current_user)): | |
return { | |
"status": True, | |
"template": app.state.config.RAG_TEMPLATE, | |
} | |
async def get_query_settings(user=Depends(get_admin_user)): | |
return { | |
"status": True, | |
"template": app.state.config.RAG_TEMPLATE, | |
"k": app.state.config.TOP_K, | |
"r": app.state.config.RELEVANCE_THRESHOLD, | |
"hybrid": app.state.config.ENABLE_RAG_HYBRID_SEARCH, | |
} | |
class QuerySettingsForm(BaseModel): | |
k: Optional[int] = None | |
r: Optional[float] = None | |
template: Optional[str] = None | |
hybrid: Optional[bool] = None | |
async def update_query_settings( | |
form_data: QuerySettingsForm, user=Depends(get_admin_user) | |
): | |
app.state.config.RAG_TEMPLATE = ( | |
form_data.template if form_data.template else RAG_TEMPLATE | |
) | |
app.state.config.TOP_K = form_data.k if form_data.k else 4 | |
app.state.config.RELEVANCE_THRESHOLD = form_data.r if form_data.r else 0.0 | |
app.state.config.ENABLE_RAG_HYBRID_SEARCH = ( | |
form_data.hybrid if form_data.hybrid else False | |
) | |
return { | |
"status": True, | |
"template": app.state.config.RAG_TEMPLATE, | |
"k": app.state.config.TOP_K, | |
"r": app.state.config.RELEVANCE_THRESHOLD, | |
"hybrid": app.state.config.ENABLE_RAG_HYBRID_SEARCH, | |
} | |
class QueryDocForm(BaseModel): | |
collection_name: str | |
query: str | |
k: Optional[int] = None | |
r: Optional[float] = None | |
hybrid: Optional[bool] = None | |
def query_doc_handler( | |
form_data: QueryDocForm, | |
user=Depends(get_current_user), | |
): | |
try: | |
if app.state.config.ENABLE_RAG_HYBRID_SEARCH: | |
return query_doc_with_hybrid_search( | |
collection_name=form_data.collection_name, | |
query=form_data.query, | |
embedding_function=app.state.EMBEDDING_FUNCTION, | |
k=form_data.k if form_data.k else app.state.config.TOP_K, | |
reranking_function=app.state.sentence_transformer_rf, | |
r=( | |
form_data.r if form_data.r else app.state.config.RELEVANCE_THRESHOLD | |
), | |
) | |
else: | |
return query_doc( | |
collection_name=form_data.collection_name, | |
query=form_data.query, | |
embedding_function=app.state.EMBEDDING_FUNCTION, | |
k=form_data.k if form_data.k else app.state.config.TOP_K, | |
) | |
except Exception as e: | |
log.exception(e) | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail=ERROR_MESSAGES.DEFAULT(e), | |
) | |
class QueryCollectionsForm(BaseModel): | |
collection_names: List[str] | |
query: str | |
k: Optional[int] = None | |
r: Optional[float] = None | |
hybrid: Optional[bool] = None | |
def query_collection_handler( | |
form_data: QueryCollectionsForm, | |
user=Depends(get_current_user), | |
): | |
try: | |
if app.state.config.ENABLE_RAG_HYBRID_SEARCH: | |
return query_collection_with_hybrid_search( | |
collection_names=form_data.collection_names, | |
query=form_data.query, | |
embedding_function=app.state.EMBEDDING_FUNCTION, | |
k=form_data.k if form_data.k else app.state.config.TOP_K, | |
reranking_function=app.state.sentence_transformer_rf, | |
r=( | |
form_data.r if form_data.r else app.state.config.RELEVANCE_THRESHOLD | |
), | |
) | |
else: | |
return query_collection( | |
collection_names=form_data.collection_names, | |
query=form_data.query, | |
embedding_function=app.state.EMBEDDING_FUNCTION, | |
k=form_data.k if form_data.k else app.state.config.TOP_K, | |
) | |
except Exception as e: | |
log.exception(e) | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail=ERROR_MESSAGES.DEFAULT(e), | |
) | |
def store_youtube_video(form_data: UrlForm, user=Depends(get_current_user)): | |
try: | |
loader = YoutubeLoader.from_youtube_url( | |
form_data.url, | |
add_video_info=True, | |
language=app.state.config.YOUTUBE_LOADER_LANGUAGE, | |
translation=app.state.YOUTUBE_LOADER_TRANSLATION, | |
) | |
data = loader.load() | |
collection_name = form_data.collection_name | |
if collection_name == "": | |
collection_name = calculate_sha256_string(form_data.url)[:63] | |
store_data_in_vector_db(data, collection_name, overwrite=True) | |
return { | |
"status": True, | |
"collection_name": collection_name, | |
"filename": form_data.url, | |
} | |
except Exception as e: | |
log.exception(e) | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail=ERROR_MESSAGES.DEFAULT(e), | |
) | |
def store_web(form_data: UrlForm, user=Depends(get_current_user)): | |
# "https://www.gutenberg.org/files/1727/1727-h/1727-h.htm" | |
try: | |
loader = get_web_loader( | |
form_data.url, | |
verify_ssl=app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION, | |
) | |
data = loader.load() | |
collection_name = form_data.collection_name | |
if collection_name == "": | |
collection_name = calculate_sha256_string(form_data.url)[:63] | |
store_data_in_vector_db(data, collection_name, overwrite=True) | |
return { | |
"status": True, | |
"collection_name": collection_name, | |
"filename": form_data.url, | |
} | |
except Exception as e: | |
log.exception(e) | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail=ERROR_MESSAGES.DEFAULT(e), | |
) | |
def get_web_loader(url: str, verify_ssl: bool = True): | |
# Check if the URL is valid | |
if isinstance(validators.url(url), validators.ValidationError): | |
raise ValueError(ERROR_MESSAGES.INVALID_URL) | |
if not ENABLE_RAG_LOCAL_WEB_FETCH: | |
# Local web fetch is disabled, filter out any URLs that resolve to private IP addresses | |
parsed_url = urllib.parse.urlparse(url) | |
# Get IPv4 and IPv6 addresses | |
ipv4_addresses, ipv6_addresses = resolve_hostname(parsed_url.hostname) | |
# Check if any of the resolved addresses are private | |
# This is technically still vulnerable to DNS rebinding attacks, as we don't control WebBaseLoader | |
for ip in ipv4_addresses: | |
if validators.ipv4(ip, private=True): | |
raise ValueError(ERROR_MESSAGES.INVALID_URL) | |
for ip in ipv6_addresses: | |
if validators.ipv6(ip, private=True): | |
raise ValueError(ERROR_MESSAGES.INVALID_URL) | |
return WebBaseLoader(url, verify_ssl=verify_ssl) | |
def resolve_hostname(hostname): | |
# Get address information | |
addr_info = socket.getaddrinfo(hostname, None) | |
# Extract IP addresses from address information | |
ipv4_addresses = [info[4][0] for info in addr_info if info[0] == socket.AF_INET] | |
ipv6_addresses = [info[4][0] for info in addr_info if info[0] == socket.AF_INET6] | |
return ipv4_addresses, ipv6_addresses | |
def store_data_in_vector_db(data, collection_name, overwrite: bool = False) -> bool: | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=app.state.config.CHUNK_SIZE, | |
chunk_overlap=app.state.config.CHUNK_OVERLAP, | |
add_start_index=True, | |
) | |
docs = text_splitter.split_documents(data) | |
if len(docs) > 0: | |
log.info(f"store_data_in_vector_db {docs}") | |
return store_docs_in_vector_db(docs, collection_name, overwrite), None | |
else: | |
raise ValueError(ERROR_MESSAGES.EMPTY_CONTENT) | |
def store_text_in_vector_db( | |
text, metadata, collection_name, overwrite: bool = False | |
) -> bool: | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=app.state.config.CHUNK_SIZE, | |
chunk_overlap=app.state.config.CHUNK_OVERLAP, | |
add_start_index=True, | |
) | |
docs = text_splitter.create_documents([text], metadatas=[metadata]) | |
return store_docs_in_vector_db(docs, collection_name, overwrite) | |
def store_docs_in_vector_db(docs, collection_name, overwrite: bool = False) -> bool: | |
log.info(f"store_docs_in_vector_db {docs} {collection_name}") | |
texts = [doc.page_content for doc in docs] | |
metadatas = [doc.metadata for doc in docs] | |
try: | |
if overwrite: | |
for collection in CHROMA_CLIENT.list_collections(): | |
if collection_name == collection.name: | |
log.info(f"deleting existing collection {collection_name}") | |
CHROMA_CLIENT.delete_collection(name=collection_name) | |
collection = CHROMA_CLIENT.create_collection(name=collection_name) | |
embedding_func = get_embedding_function( | |
app.state.config.RAG_EMBEDDING_ENGINE, | |
app.state.config.RAG_EMBEDDING_MODEL, | |
app.state.sentence_transformer_ef, | |
app.state.config.OPENAI_API_KEY, | |
app.state.config.OPENAI_API_BASE_URL, | |
) | |
embedding_texts = list(map(lambda x: x.replace("\n", " "), texts)) | |
embeddings = embedding_func(embedding_texts) | |
for batch in create_batches( | |
api=CHROMA_CLIENT, | |
ids=[str(uuid.uuid4()) for _ in texts], | |
metadatas=metadatas, | |
embeddings=embeddings, | |
documents=texts, | |
): | |
collection.add(*batch) | |
return True | |
except Exception as e: | |
log.exception(e) | |
if e.__class__.__name__ == "UniqueConstraintError": | |
return True | |
return False | |
def get_loader(filename: str, file_content_type: str, file_path: str): | |
file_ext = filename.split(".")[-1].lower() | |
known_type = True | |
known_source_ext = [ | |
"go", | |
"py", | |
"java", | |
"sh", | |
"bat", | |
"ps1", | |
"cmd", | |
"js", | |
"ts", | |
"css", | |
"cpp", | |
"hpp", | |
"h", | |
"c", | |
"cs", | |
"sql", | |
"log", | |
"ini", | |
"pl", | |
"pm", | |
"r", | |
"dart", | |
"dockerfile", | |
"env", | |
"php", | |
"hs", | |
"hsc", | |
"lua", | |
"nginxconf", | |
"conf", | |
"m", | |
"mm", | |
"plsql", | |
"perl", | |
"rb", | |
"rs", | |
"db2", | |
"scala", | |
"bash", | |
"swift", | |
"vue", | |
"svelte", | |
] | |
if file_ext == "pdf": | |
loader = PyPDFLoader( | |
file_path, extract_images=app.state.config.PDF_EXTRACT_IMAGES | |
) | |
elif file_ext == "csv": | |
loader = CSVLoader(file_path) | |
elif file_ext == "rst": | |
loader = UnstructuredRSTLoader(file_path, mode="elements") | |
elif file_ext == "xml": | |
loader = UnstructuredXMLLoader(file_path) | |
elif file_ext in ["htm", "html"]: | |
loader = BSHTMLLoader(file_path, open_encoding="unicode_escape") | |
elif file_ext == "md": | |
loader = UnstructuredMarkdownLoader(file_path) | |
elif file_content_type == "application/epub+zip": | |
loader = UnstructuredEPubLoader(file_path) | |
elif ( | |
file_content_type | |
== "application/vnd.openxmlformats-officedocument.wordprocessingml.document" | |
or file_ext in ["doc", "docx"] | |
): | |
loader = Docx2txtLoader(file_path) | |
elif file_content_type in [ | |
"application/vnd.ms-excel", | |
"application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", | |
] or file_ext in ["xls", "xlsx"]: | |
loader = UnstructuredExcelLoader(file_path) | |
elif file_content_type in [ | |
"application/vnd.ms-powerpoint", | |
"application/vnd.openxmlformats-officedocument.presentationml.presentation", | |
] or file_ext in ["ppt", "pptx"]: | |
loader = UnstructuredPowerPointLoader(file_path) | |
elif file_ext in known_source_ext or ( | |
file_content_type and file_content_type.find("text/") >= 0 | |
): | |
loader = TextLoader(file_path, autodetect_encoding=True) | |
else: | |
loader = TextLoader(file_path, autodetect_encoding=True) | |
known_type = False | |
return loader, known_type | |
def store_doc( | |
collection_name: Optional[str] = Form(None), | |
file: UploadFile = File(...), | |
user=Depends(get_current_user), | |
): | |
# "https://www.gutenberg.org/files/1727/1727-h/1727-h.htm" | |
log.info(f"file.content_type: {file.content_type}") | |
try: | |
unsanitized_filename = file.filename | |
filename = os.path.basename(unsanitized_filename) | |
file_path = f"{UPLOAD_DIR}/{filename}" | |
contents = file.file.read() | |
with open(file_path, "wb") as f: | |
f.write(contents) | |
f.close() | |
f = open(file_path, "rb") | |
if collection_name == None: | |
collection_name = calculate_sha256(f)[:63] | |
f.close() | |
loader, known_type = get_loader(filename, file.content_type, file_path) | |
data = loader.load() | |
try: | |
result = store_data_in_vector_db(data, collection_name) | |
if result: | |
return { | |
"status": True, | |
"collection_name": collection_name, | |
"filename": filename, | |
"known_type": known_type, | |
} | |
except Exception as e: | |
raise HTTPException( | |
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, | |
detail=e, | |
) | |
except Exception as e: | |
log.exception(e) | |
if "No pandoc was found" in str(e): | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail=ERROR_MESSAGES.PANDOC_NOT_INSTALLED, | |
) | |
else: | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail=ERROR_MESSAGES.DEFAULT(e), | |
) | |
class TextRAGForm(BaseModel): | |
name: str | |
content: str | |
collection_name: Optional[str] = None | |
def store_text( | |
form_data: TextRAGForm, | |
user=Depends(get_current_user), | |
): | |
collection_name = form_data.collection_name | |
if collection_name == None: | |
collection_name = calculate_sha256_string(form_data.content) | |
result = store_text_in_vector_db( | |
form_data.content, | |
metadata={"name": form_data.name, "created_by": user.id}, | |
collection_name=collection_name, | |
) | |
if result: | |
return {"status": True, "collection_name": collection_name} | |
else: | |
raise HTTPException( | |
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, | |
detail=ERROR_MESSAGES.DEFAULT(), | |
) | |
def scan_docs_dir(user=Depends(get_admin_user)): | |
for path in Path(DOCS_DIR).rglob("./**/*"): | |
try: | |
if path.is_file() and not path.name.startswith("."): | |
tags = extract_folders_after_data_docs(path) | |
filename = path.name | |
file_content_type = mimetypes.guess_type(path) | |
f = open(path, "rb") | |
collection_name = calculate_sha256(f)[:63] | |
f.close() | |
loader, known_type = get_loader( | |
filename, file_content_type[0], str(path) | |
) | |
data = loader.load() | |
try: | |
result = store_data_in_vector_db(data, collection_name) | |
if result: | |
sanitized_filename = sanitize_filename(filename) | |
doc = Documents.get_doc_by_name(sanitized_filename) | |
if doc == None: | |
doc = Documents.insert_new_doc( | |
user.id, | |
DocumentForm( | |
**{ | |
"name": sanitized_filename, | |
"title": filename, | |
"collection_name": collection_name, | |
"filename": filename, | |
"content": ( | |
json.dumps( | |
{ | |
"tags": list( | |
map( | |
lambda name: {"name": name}, | |
tags, | |
) | |
) | |
} | |
) | |
if len(tags) | |
else "{}" | |
), | |
} | |
), | |
) | |
except Exception as e: | |
log.exception(e) | |
pass | |
except Exception as e: | |
log.exception(e) | |
return True | |
def reset_vector_db(user=Depends(get_admin_user)): | |
CHROMA_CLIENT.reset() | |
def reset(user=Depends(get_admin_user)) -> bool: | |
folder = f"{UPLOAD_DIR}" | |
for filename in os.listdir(folder): | |
file_path = os.path.join(folder, filename) | |
try: | |
if os.path.isfile(file_path) or os.path.islink(file_path): | |
os.unlink(file_path) | |
elif os.path.isdir(file_path): | |
shutil.rmtree(file_path) | |
except Exception as e: | |
log.error("Failed to delete %s. Reason: %s" % (file_path, e)) | |
try: | |
CHROMA_CLIENT.reset() | |
except Exception as e: | |
log.exception(e) | |
return True | |
if ENV == "dev": | |
async def get_embeddings(): | |
return {"result": app.state.EMBEDDING_FUNCTION("hello world")} | |
async def get_embeddings_text(text: str): | |
return {"result": app.state.EMBEDDING_FUNCTION(text)} | |