File size: 7,092 Bytes
755dd12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import { ESearchEngine, IChatInputMessage, IStreamHandler, Provider, SearchFunc, TMode } from '../interface';
import { searchWithBing, searchWithGoogle, searchWithSogou, searchWithSearXNG, searchWithChatGLM } from '../service';
import { DeepQueryPrompt, MoreQuestionsPrompt, RagQueryPrompt, TranslatePrompt } from './prompt';
import platform from '../provider';
import { Models } from '../utils/constant';
import { ESearXNGCategory } from '../search/searxng';
import util from 'util';
interface RagOptions {
engine?: ESearchEngine
stream?: boolean
model?: string
// use local llm?
locally?: boolean
provider?: Provider
}
// const CACHE_NAME = 'search_with_ai';
export class Rag {
private search: SearchFunc;
private chat: (...args: any[]) => Promise<any>;
private model: string;
// enable stream?
private stream: boolean;
// search engine
private engine: ESearchEngine;
constructor(params?: RagOptions) {
const { engine = ESearchEngine.SEARXNG, stream = true, model, locally, provider } = params || {};
if (!model) throw new Error('model is required');
if (locally && provider) {
this.chat = platform[provider].chatStream.bind(platform[provider]);
} else {
const chat = processModel(model);
if (!chat) throw new Error('model is not supported');
this.chat = chat;
}
this.model = model;
this.stream = stream;
console.info('[query with]:', engine, model);
console.info('[query with local llm]:', locally);
this.engine = engine;
switch (engine) {
case ESearchEngine.GOOGLE:
this.search = searchWithGoogle;
break;
case ESearchEngine.BING:
this.search = searchWithBing;
break;
case ESearchEngine.SOGOU:
this.search = searchWithSogou;
break;
case ESearchEngine.SEARXNG:
this.search = searchWithSearXNG;
break;
case ESearchEngine.CHATGLM:
this.search = searchWithChatGLM;
break;
default:
this.search = searchWithSearXNG;
}
}
public async query(query: string, categories = [ESearXNGCategory.GENERAL], mode: TMode = 'simple', language = 'all', onMessage?: (...args: any[]) => void) {
let searchQuery = query;
// rewrite query for [SCIENCE]
if (categories.includes(ESearXNGCategory.SCIENCE) && this.engine === ESearchEngine.SEARXNG) {
const rewrite = await this.translate(query);
if (rewrite) searchQuery = rewrite;
}
// Parameters supported by searxng: categories.
const contexts = await this.search(searchQuery, categories, language);
console.log(`[search [${categories}] results]`, contexts.length);
console.log('[search mode]', mode);
const REFERENCE_COUNT = process.env.REFERENCE_COUNT || 8;
const limitContexts = contexts.slice(0, +REFERENCE_COUNT);
if (!this.stream) {
const relatedPromise = this.getRelatedQuestions(query, limitContexts);
const answerPromise = this.getAiAnswer(query, contexts);
const [related, answer] = await Promise.all([relatedPromise, answerPromise]);
return {
related,
answer,
contexts: limitContexts
};
}
// searxng images search
if (this.engine === ESearchEngine.SEARXNG) {
const res = await this.search(query, [ESearXNGCategory.IMAGES], language);
const engines = process.env.SEARXNG_IMAGES_ENGINES ? process.env.SEARXNG_IMAGES_ENGINES.split(',') : [];
const images = res.filter(item => {
if (!item.thumbnail) return false;
if (engines.length > 0)
return engines.some(engine => item.engine?.includes(engine));
return item.engine?.includes('bing') || item.engine?.includes('google');
});
for (const image of images) {
onMessage?.(JSON.stringify({ image }));
}
}
for (const context of limitContexts) {
onMessage?.(JSON.stringify({ context }));
}
await this.getAiAnswer(query, limitContexts, mode, (msg) => {
onMessage?.(JSON.stringify({ answer: msg }));
});
await this.getRelatedQuestions(query, limitContexts, (msg) => {
onMessage?.(JSON.stringify({ related: msg }));
});
onMessage?.(null, true);
}
// Gets related questions based on the query and context.
private async getRelatedQuestions(query: string, contexts: any[], onMessage?: IStreamHandler) {
try {
const { messages } = this.paramsFormatter(query, undefined, contexts, 'related');
const { model, stream } = this;
if (!stream) {
const res = await this.chat(messages, this.model);
return res.split('\n');
}
await this.chat(messages, onMessage, model);
} catch (err) {
console.error('[LLM Error]:', err);
return [];
}
}
private async getAiAnswer(query: string, contexts: any[], mode: TMode = 'simple', onMessage?: IStreamHandler) {
const { model, stream } = this;
try {
const { messages } = this.paramsFormatter(query, mode, contexts, 'answer');
if (!stream) {
const res = await this.chat(messages, this.model);
return res;
}
await this.chat(messages, (msg: string, done: boolean) => {
onMessage?.(msg, done);
}, model);
} catch (err: any) {
console.error('[LLM Error]:', err);
const msg = `[Oops~ Some errors seem to have occurred]: ${err?.message || 'Please check the console'}`;
if (!stream) return msg;
else onMessage?.(msg, true);
}
}
// translate
private async translate(text: string, targetLang = 'English'): Promise<string> {
try {
const content = util.format(TranslatePrompt, targetLang, text);
const messages: IChatInputMessage[] = [
{
role: 'user',
content
}
];
// console.log(content);
let translated = '';
if (!this.stream) {
const res = await this.chat(messages, this.model);
translated = res;
} else {
await this.chat(messages, (msg: string) => {
if (msg) translated += msg;
}, this.model);
}
return translated;
} catch (err) {
console.log('[RAG Translate error]', err);
return text;
}
}
private paramsFormatter(query: string, mode: TMode = 'simple', contexts: any[], type: 'answer' | 'related') {
const context = contexts.map((item, index) => `[[citation:${index + 1}]] ${item.snippet}`).join('\n\n');
let prompt = type === 'answer' ? RagQueryPrompt : MoreQuestionsPrompt;
// deep answer
if (mode === 'deep' && type === 'answer') {
prompt = DeepQueryPrompt;
}
const system = util.format(prompt, context);
const messages: IChatInputMessage[] = [
{
role: 'user',
content: `${system} ${query}`
}
];
return {
messages
};
}
}
function processModel(model: string) {
const targetModel = Models.find(item => {
return item.models.includes(model);
});
if (targetModel?.platform) {
const target = platform[targetModel.platform];
return target.chatStream.bind(target);
}
}
|