Spaces:
Runtime error
Runtime error
| # -*- coding:utf-8 -*- | |
| from __future__ import annotations | |
| from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type | |
| import logging | |
| import json | |
| import gradio as gr | |
| # import openai | |
| import os | |
| import traceback | |
| import requests | |
| # import markdown | |
| import csv | |
| import mdtex2html | |
| from pypinyin import lazy_pinyin | |
| from presets import * | |
| import tiktoken | |
| from tqdm import tqdm | |
| import colorama | |
| from duckduckgo_search import ddg | |
| import datetime | |
| # logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s") | |
| if TYPE_CHECKING: | |
| from typing import TypedDict | |
| class DataframeData(TypedDict): | |
| headers: List[str] | |
| data: List[List[str | int | bool]] | |
| initial_prompt = "You are a helpful assistant." | |
| API_URL = "https://api.openai.com/v1/chat/completions" | |
| HISTORY_DIR = "history" | |
| TEMPLATES_DIR = "templates" | |
| def postprocess( | |
| self, y: List[Tuple[str | None, str | None]] | |
| ) -> List[Tuple[str | None, str | None]]: | |
| """ | |
| Parameters: | |
| y: List of tuples representing the message and response pairs. Each message and response should be a string, which may be in Markdown format. | |
| Returns: | |
| List of tuples representing the message and response. Each message and response will be a string of HTML. | |
| """ | |
| if y is None: | |
| return [] | |
| for i, (message, response) in enumerate(y): | |
| y[i] = ( | |
| # None if message is None else markdown.markdown(message), | |
| # None if response is None else markdown.markdown(response), | |
| None if message is None else mdtex2html.convert((message)), | |
| None if response is None else mdtex2html.convert(response), | |
| ) | |
| return y | |
| def count_token(input_str): | |
| encoding = tiktoken.get_encoding("cl100k_base") | |
| length = len(encoding.encode(input_str)) | |
| return length | |
| def parse_text(text): | |
| lines = text.split("\n") | |
| lines = [line for line in lines if line != ""] | |
| count = 0 | |
| for i, line in enumerate(lines): | |
| if "```" in line: | |
| count += 1 | |
| items = line.split('`') | |
| if count % 2 == 1: | |
| lines[i] = f'<pre><code class="language-{items[-1]}">' | |
| else: | |
| lines[i] = f'<br></code></pre>' | |
| else: | |
| if i > 0: | |
| if count % 2 == 1: | |
| line = line.replace("`", "\`") | |
| line = line.replace("<", "<") | |
| line = line.replace(">", ">") | |
| line = line.replace(" ", " ") | |
| line = line.replace("*", "*") | |
| line = line.replace("_", "_") | |
| line = line.replace("-", "-") | |
| line = line.replace(".", ".") | |
| line = line.replace("!", "!") | |
| line = line.replace("(", "(") | |
| line = line.replace(")", ")") | |
| line = line.replace("$", "$") | |
| lines[i] = "<br>"+line | |
| text = "".join(lines) | |
| return text | |
| def construct_text(role, text): | |
| return {"role": role, "content": text} | |
| def construct_user(text): | |
| return construct_text("user", text) | |
| def construct_system(text): | |
| return construct_text("system", text) | |
| def construct_assistant(text): | |
| return construct_text("assistant", text) | |
| def construct_token_message(token, stream=False): | |
| return f"Token 计数: {token}" | |
| def get_response(openai_api_key, system_prompt, history, temperature, top_p, stream, selected_model): | |
| headers = { | |
| "Content-Type": "application/json", | |
| "Authorization": f"Bearer {openai_api_key}" | |
| } | |
| history = [construct_system(system_prompt), *history] | |
| payload = { | |
| "model": selected_model, | |
| "messages": history, # [{"role": "user", "content": f"{inputs}"}], | |
| "temperature": temperature, # 1.0, | |
| "top_p": top_p, # 1.0, | |
| "n": 1, | |
| "stream": stream, | |
| "presence_penalty": 0, | |
| "frequency_penalty": 0, | |
| } | |
| if stream: | |
| timeout = timeout_streaming | |
| else: | |
| timeout = timeout_all | |
| response = requests.post(API_URL, headers=headers, json=payload, stream=True, timeout=timeout) | |
| return response | |
| def stream_predict(openai_api_key, system_prompt, history, inputs, chatbot, all_token_counts, top_p, temperature, selected_model): | |
| def get_return_value(): | |
| return chatbot, history, status_text, all_token_counts | |
| logging.info("实时回答模式") | |
| partial_words = "" | |
| counter = 0 | |
| status_text = "开始实时传输回答……" | |
| history.append(construct_user(inputs)) | |
| history.append(construct_assistant("")) | |
| chatbot.append((parse_text(inputs), "")) | |
| user_token_count = 0 | |
| if len(all_token_counts) == 0: | |
| system_prompt_token_count = count_token(system_prompt) | |
| user_token_count = count_token(inputs) + system_prompt_token_count | |
| else: | |
| user_token_count = count_token(inputs) | |
| all_token_counts.append(user_token_count) | |
| logging.info(f"输入token计数: {user_token_count}") | |
| yield get_return_value() | |
| try: | |
| response = get_response(openai_api_key, system_prompt, history, temperature, top_p, True, selected_model) | |
| except requests.exceptions.ConnectTimeout: | |
| status_text = standard_error_msg + connection_timeout_prompt + error_retrieve_prompt | |
| yield get_return_value() | |
| return | |
| except requests.exceptions.ReadTimeout: | |
| status_text = standard_error_msg + read_timeout_prompt + error_retrieve_prompt | |
| yield get_return_value() | |
| return | |
| yield get_return_value() | |
| error_json_str = "" | |
| for chunk in tqdm(response.iter_lines()): | |
| if counter == 0: | |
| counter += 1 | |
| continue | |
| counter += 1 | |
| # check whether each line is non-empty | |
| if chunk: | |
| chunk = chunk.decode() | |
| chunklength = len(chunk) | |
| try: | |
| chunk = json.loads(chunk[6:]) | |
| except json.JSONDecodeError: | |
| logging.info(chunk) | |
| error_json_str += chunk | |
| status_text = f"JSON解析错误。请重置对话。收到的内容: {error_json_str}" | |
| yield get_return_value() | |
| continue | |
| # decode each line as response data is in bytes | |
| if chunklength > 6 and "delta" in chunk['choices'][0]: | |
| finish_reason = chunk['choices'][0]['finish_reason'] | |
| status_text = construct_token_message(sum(all_token_counts), stream=True) | |
| if finish_reason == "stop": | |
| yield get_return_value() | |
| break | |
| try: | |
| partial_words = partial_words + chunk['choices'][0]["delta"]["content"] | |
| except KeyError: | |
| status_text = standard_error_msg + "API回复中找不到内容。很可能是Token计数达到上限了。请重置对话。当前Token计数: " + str(sum(all_token_counts)) | |
| yield get_return_value() | |
| break | |
| history[-1] = construct_assistant(partial_words) | |
| chatbot[-1] = (parse_text(inputs), parse_text(partial_words)) | |
| all_token_counts[-1] += 1 | |
| yield get_return_value() | |
| def predict_all(openai_api_key, system_prompt, history, inputs, chatbot, all_token_counts, top_p, temperature, selected_model): | |
| logging.info("一次性回答模式") | |
| history.append(construct_user(inputs)) | |
| history.append(construct_assistant("")) | |
| chatbot.append((parse_text(inputs), "")) | |
| all_token_counts.append(count_token(inputs)) | |
| try: | |
| response = get_response(openai_api_key, system_prompt, history, temperature, top_p, False, selected_model) | |
| except requests.exceptions.ConnectTimeout: | |
| status_text = standard_error_msg + connection_timeout_prompt + error_retrieve_prompt | |
| return chatbot, history, status_text, all_token_counts | |
| except requests.exceptions.ProxyError: | |
| status_text = standard_error_msg + proxy_error_prompt + error_retrieve_prompt | |
| return chatbot, history, status_text, all_token_counts | |
| except requests.exceptions.SSLError: | |
| status_text = standard_error_msg + ssl_error_prompt + error_retrieve_prompt | |
| return chatbot, history, status_text, all_token_counts | |
| response = json.loads(response.text) | |
| content = response["choices"][0]["message"]["content"] | |
| history[-1] = construct_assistant(content) | |
| chatbot[-1] = (parse_text(inputs), parse_text(content)) | |
| total_token_count = response["usage"]["total_tokens"] | |
| all_token_counts[-1] = total_token_count - sum(all_token_counts) | |
| status_text = construct_token_message(total_token_count) | |
| return chatbot, history, status_text, all_token_counts | |
| def predict(openai_api_key, system_prompt, history, inputs, chatbot, all_token_counts, top_p, temperature, stream=False, selected_model = MODELS[0], use_websearch_checkbox = False, should_check_token_count = True): # repetition_penalty, top_k | |
| logging.info("输入为:" +colorama.Fore.BLUE + f"{inputs}" + colorama.Style.RESET_ALL) | |
| if use_websearch_checkbox: | |
| results = ddg(inputs, max_results=3) | |
| web_results = [] | |
| for idx, result in enumerate(results): | |
| logging.info(f"搜索结果{idx + 1}:{result}") | |
| web_results.append(f'[{idx+1}]"{result["body"]}"\nURL: {result["href"]}') | |
| web_results = "\n\n".join(web_results) | |
| today = datetime.datetime.today().strftime("%Y-%m-%d") | |
| inputs = websearch_prompt.replace("{current_date}", today).replace("{query}", inputs).replace("{web_results}", web_results) | |
| if len(openai_api_key) != 51: | |
| status_text = standard_error_msg + no_apikey_msg | |
| logging.info(status_text) | |
| chatbot.append((parse_text(inputs), "")) | |
| if len(history) == 0: | |
| history.append(construct_user(inputs)) | |
| history.append("") | |
| all_token_counts.append(0) | |
| else: | |
| history[-2] = construct_user(inputs) | |
| yield chatbot, history, status_text, all_token_counts | |
| return | |
| if stream: | |
| yield chatbot, history, "开始生成回答……", all_token_counts | |
| if stream: | |
| logging.info("使用流式传输") | |
| iter = stream_predict(openai_api_key, system_prompt, history, inputs, chatbot, all_token_counts, top_p, temperature, selected_model) | |
| for chatbot, history, status_text, all_token_counts in iter: | |
| yield chatbot, history, status_text, all_token_counts | |
| else: | |
| logging.info("不使用流式传输") | |
| chatbot, history, status_text, all_token_counts = predict_all(openai_api_key, system_prompt, history, inputs, chatbot, all_token_counts, top_p, temperature, selected_model) | |
| yield chatbot, history, status_text, all_token_counts | |
| logging.info(f"传输完毕。当前token计数为{all_token_counts}") | |
| if len(history) > 1 and history[-1]['content'] != inputs: | |
| logging.info("回答为:" +colorama.Fore.BLUE + f"{history[-1]['content']}" + colorama.Style.RESET_ALL) | |
| if stream: | |
| max_token = max_token_streaming | |
| else: | |
| max_token = max_token_all | |
| if sum(all_token_counts) > max_token and should_check_token_count: | |
| status_text = f"精简token中{all_token_counts}/{max_token}" | |
| logging.info(status_text) | |
| yield chatbot, history, status_text, all_token_counts | |
| iter = reduce_token_size(openai_api_key, system_prompt, history, chatbot, all_token_counts, top_p, temperature, stream=False, selected_model=selected_model, hidden=True) | |
| for chatbot, history, status_text, all_token_counts in iter: | |
| status_text = f"Token 达到上限,已自动降低Token计数至 {status_text}" | |
| yield chatbot, history, status_text, all_token_counts | |
| def retry(openai_api_key, system_prompt, history, chatbot, token_count, top_p, temperature, stream=False, selected_model = MODELS[0]): | |
| logging.info("重试中……") | |
| if len(history) == 0: | |
| yield chatbot, history, f"{standard_error_msg}上下文是空的", token_count | |
| return | |
| history.pop() | |
| inputs = history.pop()["content"] | |
| token_count.pop() | |
| iter = predict(openai_api_key, system_prompt, history, inputs, chatbot, token_count, top_p, temperature, stream=stream, selected_model=selected_model) | |
| logging.info("重试完毕") | |
| for x in iter: | |
| yield x | |
| def reduce_token_size(openai_api_key, system_prompt, history, chatbot, token_count, top_p, temperature, stream=False, selected_model = MODELS[0], hidden=False): | |
| logging.info("开始减少token数量……") | |
| iter = predict(openai_api_key, system_prompt, history, summarize_prompt, chatbot, token_count, top_p, temperature, stream=stream, selected_model = selected_model, should_check_token_count=False) | |
| logging.info(f"chatbot: {chatbot}") | |
| for chatbot, history, status_text, previous_token_count in iter: | |
| history = history[-2:] | |
| token_count = previous_token_count[-1:] | |
| if hidden: | |
| chatbot.pop() | |
| yield chatbot, history, construct_token_message(sum(token_count), stream=stream), token_count | |
| logging.info("减少token数量完毕") | |
| def delete_last_conversation(chatbot, history, previous_token_count): | |
| if len(chatbot) > 0 and standard_error_msg in chatbot[-1][1]: | |
| logging.info("由于包含报错信息,只删除chatbot记录") | |
| chatbot.pop() | |
| return chatbot, history | |
| if len(history) > 0: | |
| logging.info("删除了一组对话历史") | |
| history.pop() | |
| history.pop() | |
| if len(chatbot) > 0: | |
| logging.info("删除了一组chatbot对话") | |
| chatbot.pop() | |
| if len(previous_token_count) > 0: | |
| logging.info("删除了一组对话的token计数记录") | |
| previous_token_count.pop() | |
| return chatbot, history, previous_token_count, construct_token_message(sum(previous_token_count)) | |
| def save_chat_history(filename, system, history, chatbot): | |
| logging.info("保存对话历史中……") | |
| if filename == "": | |
| return | |
| if not filename.endswith(".json"): | |
| filename += ".json" | |
| os.makedirs(HISTORY_DIR, exist_ok=True) | |
| json_s = {"system": system, "history": history, "chatbot": chatbot} | |
| logging.info(json_s) | |
| with open(os.path.join(HISTORY_DIR, filename), "w") as f: | |
| json.dump(json_s, f, ensure_ascii=False, indent=4) | |
| logging.info("保存对话历史完毕") | |
| def load_chat_history(filename, system, history, chatbot): | |
| logging.info("加载对话历史中……") | |
| try: | |
| with open(os.path.join(HISTORY_DIR, filename), "r") as f: | |
| json_s = json.load(f) | |
| try: | |
| if type(json_s["history"][0]) == str: | |
| logging.info("历史记录格式为旧版,正在转换……") | |
| new_history = [] | |
| for index, item in enumerate(json_s["history"]): | |
| if index % 2 == 0: | |
| new_history.append(construct_user(item)) | |
| else: | |
| new_history.append(construct_assistant(item)) | |
| json_s["history"] = new_history | |
| logging.info(new_history) | |
| except: | |
| # 没有对话历史 | |
| pass | |
| logging.info("加载对话历史完毕") | |
| return filename, json_s["system"], json_s["history"], json_s["chatbot"] | |
| except FileNotFoundError: | |
| logging.info("没有找到对话历史文件,不执行任何操作") | |
| return filename, system, history, chatbot | |
| def sorted_by_pinyin(list): | |
| return sorted(list, key=lambda char: lazy_pinyin(char)[0][0]) | |
| def get_file_names(dir, plain=False, filetypes=[".json"]): | |
| logging.info(f"获取文件名列表,目录为{dir},文件类型为{filetypes},是否为纯文本列表{plain}") | |
| files = [] | |
| try: | |
| for type in filetypes: | |
| files += [f for f in os.listdir(dir) if f.endswith(type)] | |
| except FileNotFoundError: | |
| files = [] | |
| files = sorted_by_pinyin(files) | |
| if files == []: | |
| files = [""] | |
| if plain: | |
| return files | |
| else: | |
| return gr.Dropdown.update(choices=files) | |
| def get_history_names(plain=False): | |
| logging.info("获取历史记录文件名列表") | |
| return get_file_names(HISTORY_DIR, plain) | |
| def load_template(filename, mode=0): | |
| logging.info(f"加载模板文件{filename},模式为{mode}(0为返回字典和下拉菜单,1为返回下拉菜单,2为返回字典)") | |
| lines = [] | |
| logging.info("Loading template...") | |
| if filename.endswith(".json"): | |
| with open(os.path.join(TEMPLATES_DIR, filename), "r", encoding="utf8") as f: | |
| lines = json.load(f) | |
| lines = [[i["act"], i["prompt"]] for i in lines] | |
| else: | |
| with open(os.path.join(TEMPLATES_DIR, filename), "r", encoding="utf8") as csvfile: | |
| reader = csv.reader(csvfile) | |
| lines = list(reader) | |
| lines = lines[1:] | |
| if mode == 1: | |
| return sorted_by_pinyin([row[0] for row in lines]) | |
| elif mode == 2: | |
| return {row[0]:row[1] for row in lines} | |
| else: | |
| choices = sorted_by_pinyin([row[0] for row in lines]) | |
| return {row[0]:row[1] for row in lines}, gr.Dropdown.update(choices=choices, value=choices[0]) | |
| def get_template_names(plain=False): | |
| logging.info("获取模板文件名列表") | |
| return get_file_names(TEMPLATES_DIR, plain, filetypes=[".csv", "json"]) | |
| def get_template_content(templates, selection, original_system_prompt): | |
| logging.info(f"应用模板中,选择为{selection},原始系统提示为{original_system_prompt}") | |
| try: | |
| return templates[selection] | |
| except: | |
| return original_system_prompt | |
| def reset_state(): | |
| logging.info("重置状态") | |
| return [], [], [], construct_token_message(0) | |
| def reset_textbox(): | |
| return gr.update(value='') | |