File size: 11,190 Bytes
04bdc20 02840bb cf0a4f4 04bdc20 e3788ae 04bdc20 7fb1b6e 04bdc20 7d48f50 755be1d 50df3a5 7fb1b6e 04bdc20 a269fbf 04bdc20 a269fbf 04bdc20 e3788ae 4199bb2 dadb2c4 04bdc20 6c76a5e dadb2c4 04bdc20 dadb2c4 04bdc20 09fe09b 8d2411a 04bdc20 dcc0016 04bdc20 dcc0016 04bdc20 4199bb2 e8be0db 04bdc20 feaf069 04bdc20 feaf069 04bdc20 7fa3a69 04bdc20 a37fd50 540a99f 04bdc20 a37fd50 04bdc20 feaf069 7fa3a69 feaf069 04bdc20 8e72a75 04bdc20 02840bb 96b88af 04bdc20 cf0a4f4 cdeccfb 22e54ff feaf069 22e54ff 8e3ee3f 26545b6 e31a7f4 8e72a75 ea32ef3 8e72a75 cf0a4f4 04bdc20 02840bb 04bdc20 d5b89d0 04bdc20 e3788ae 04bdc20 21f1de2 04bdc20 f735cdc 21f1de2 04bdc20 540a99f 04bdc20 21f1de2 feaf069 21f1de2 04bdc20 16b5280 feaf069 04bdc20 21f1de2 e3788ae 04bdc20 21f1de2 e8be0db 21f1de2 04bdc20 e8be0db 04bdc20 e8be0db cff3bbb 04bdc20 366a904 2ee4138 04bdc20 e8be0db 04bdc20 21f1de2 e8be0db 04bdc20 7d48f50 04bdc20 12fda25 04bdc20 21f1de2 04bdc20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import openai
import tiktoken
import numpy as np
import concurrent
import collections
import threading
import datetime
import time
import pytz
import json
import os
openai.api_keys = os.getenv('API_KEYs').split("\n")
openai.api_key = openai.api_keys[0]
#print(os.getenv('API_KEYs'))
timezone = pytz.timezone('Asia/Shanghai')
timestamp2string = lambda timestamp: datetime.datetime.fromtimestamp(timestamp).astimezone(timezone).strftime('%Y-%m-%d %H:%M:%S')
def num_tokens_from_messages(messages, model="gpt-3.5-turbo"):
"""Returns the number of tokens used by a list of messages."""
try:
encoding = tiktoken.encoding_for_model(model)
except KeyError:
encoding = tiktoken.get_encoding("cl100k_base")
if model == "gpt-3.5-turbo": # note: future models may deviate from this
num_tokens = 0
len_values = 0
for message in messages:
num_tokens += 4 # every message follows <im_start>{role/name}\n{content}<im_end>\n
for key, value in message.items():
try:
num_tokens += len(encoding.encode(value))
except:
num_tokens += int(num_tokens/len_values*len(value)) # linear estimation
len_values += len(value)
if key == "name": # if there's a name, the role is omitted
num_tokens += -1 # role is always required and always 1 token
num_tokens += 2 # every reply is primed with <im_start>assistant
return num_tokens
else:
raise NotImplementedError(f"""num_tokens_from_messages() is not presently implemented for model {model}.
See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""")
def read_qs():
qs, qas = [], []
directory = "./questions"
filenames = [
'math_question.txt',
'qa_question.txt',
'summarization_question.txt',
]
for filename in filenames:
with open(f"{directory}/{filename}", "r", encoding="utf-8") as f:
for idx,line in enumerate(f):
qs.append(line.replace("生成摘要","生成中文摘要"))
print(f"read {len(qs)} queries from files")
if os.path.exists(f"{directory}/qas.json"):
with open(f"{directory}/qas.json", "r", encoding="utf-8") as f:
qas = json.loads(f.read())
print(f"read {len(qas)} query-responses from qas.json")
qas = [{"q":qa["q"], "a":qa["a"]} for qa in qas if qa["a"] is not None]
print(f"keep {len(qas)} query-responses from qas.json")
existed_qs = collections.Counter([qa["q"] for qa in qas])
remained_qs = []
for q in qs:
if existed_qs[q]>0:
existed_qs[q] -= 1
else:
remained_qs.append(q)
print(f"filter out {len(qs)-len(remained_qs)} with reference to qas.json")
qs = remained_qs
return qs, qas
qs, qas = read_qs()
start_time = time.time()
num_read_qas = len(qas)
def ask(query, timeout=600):
answer = None
dead_time = time.time() + timeout
attempt_times = 0
while answer is None and time.time()<dead_time and attempt_times<10:
try:
messages=[
{"role": "user", "content": query}
]
if num_tokens_from_messages(messages)>4096:
return None
answer = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages
)["choices"][0]["message"]["content"]
except Exception as e:
if time.time()<dead_time:
print(e)
if "You exceeded your current quota, please check your plan and billing details." in str(e):
idx = openai.api_keys.index(openai.api_key)
idx = (idx + 1) % len(openai.api_keys)
openai.api_key = openai.api_keys[idx]
attempt_times += 0
print(f"switch api_key")
elif "Please reduce the length of the messages." in str(e):
return None
else:
attempt_times += 1
wait_time = int(attempt_times*10)
time.sleep(wait_time)
print(f"retry in {attempt_times*10} seconds...")
return answer
def askingChatGPT(qs, qas, min_interval_seconds=3, max_interval_seconds=15, max_retry_times=3):
history_elapsed_time = [max_interval_seconds]*10
return
for i, q in enumerate(qs):
ask_start_time = time.time()
#a = ask(q)
def ask_(q, timeout):
executor = concurrent.futures.ThreadPoolExecutor()
future = executor.submit(ask, q, timeout) # 提交函数调用任务
try:
a = future.result(timeout=timeout) # 等待函数调用任务完成,超时时间为30秒
return a
except concurrent.futures.TimeoutError:
print(f"ask call timed out after {timeout:.2f} seconds, retrying...")
executor.shutdown(wait=False)
return ask_(q, timeout*2) # 当超时时,重新调用函数
retry_times = 0
a = None
while a is None and retry_times<max_retry_times:
a = ask_(q, timeout=max(max_interval_seconds,np.mean(sorted(history_elapsed_time)[:8])))
retry_times += 1
qas.append({"q":q, "a":a})
ask_end_time = time.time()
elapsed_time = ask_end_time - ask_start_time
history_elapsed_time = history_elapsed_time[1:] + [elapsed_time]
delayTime = min_interval_seconds - elapsed_time
if delayTime>0:
time.sleep(delayTime)
print(f"{timestamp2string(time.time())}: iterations: {i+1} / {len(qs)} | elapsed time of this query (s): {elapsed_time:.2f}")
return
thread = threading.Thread(target=lambda :askingChatGPT(qs, qas))
thread.daemon = True
thread.start()
import gradio as gr
def showcase(access_key):
if not access_key==os.getenv('access_key'):
chatbot_ret = [(f"Your entered Access Key:<br>{access_key}<br>is incorrect.", f"So i cannot provide you any information in this private space.")]
else:
recent_qas = qas[-10:]
chatbot_ret = [(f"Your entered Access Key is correct.", f"The latest {len(recent_qas)} query-responses are displayed below.")]
for qa in recent_qas:
chatbot_ret += [(qa["q"].replace("\n","<br>"), str(qa["a"]).replace("\n","<br>"))]
return chatbot_ret
def download(access_key):
if not access_key.startswith(os.getenv('access_key')):
chatbot_ret = [(f"Your entered Access Key:<br>{access_key}<br>is incorrect.", f"So i cannot provide you any information in this private space.")]
file_ret = gr.File.update(value=None, visible=False)
elif access_key == f"{os.getenv('access_key')}: update":
chatbot_ret = [(f"Your entered Access Key is correct.", f"The file containing new processed query-responses ({len(qas)-num_read_qas} in total) can be downloaded below.")]
filename = f"qas-{num_read_qas}-{len(qas)}.json"
with open(filename, "w", encoding="utf-8") as f:
f.write(json.dumps(qas[num_read_qas:], ensure_ascii=False, indent=2))
file_ret = gr.File.update(value=filename, visible=True)
else:
chatbot_ret = [(f"Your entered Access Key is correct.", f"The file containing all processed query-responses ({len(qas)} in total) can be downloaded below.")]
filename = f"qas-{len(qas)}.json"
with open(filename, "w", encoding="utf-8") as f:
f.write(json.dumps(qas, ensure_ascii=False, indent=2))
file_ret = gr.File.update(value=filename, visible=True)
return chatbot_ret, file_ret
def display(access_key):
if not access_key==os.getenv('access_key'):
chatbot_ret = [(f"Your entered Access Key:<br>{access_key}<br>is incorrect.", f"So i cannot provide you any information in this private space.")]
elif len(qas)-num_read_qas<1:
chatbot_ret = [(f"Your entered Access Key is correct.", f"But the progress has just started for a while and has no useful progress information to provide.")]
else:
num_total_qs, num_processed_qs = len(qs), len(qas) - num_read_qas
time_takes = time.time() - start_time
time_remains = time_takes * (num_total_qs-num_processed_qs) / num_processed_qs
end_time = start_time + time_takes + time_remains
messages = []
for qa in qas:
messages.append({"role":"user", "content":qa["q"]})
messages.append({"role":"assistant", "content":qa["a"] or ""})
num_tokens_processed = num_tokens_from_messages(messages)
num_tokens_total = int(num_tokens_processed * (num_total_qs+num_read_qas) / (num_processed_qs+num_read_qas))
dollars_tokens_processed = 0.002 * int(num_tokens_processed/1000)
dollars_tokens_total = 0.002 * int(num_tokens_total/1000)
chatbot_ret = [(f"Your entered Access Key is correct.", f"The information of progress is displayed below.")]
chatbot_ret += [(f"The number of processed / total queries:", f"{num_processed_qs} / {num_total_qs} (+{num_read_qas})")]
chatbot_ret += [(f"The hours already takes / est. remains:", f"{time_takes/3600:.2f} / {time_remains/3600:.2f}")]
chatbot_ret += [(f"The time starts / est. ends:", f"{timestamp2string(start_time)} / {timestamp2string(end_time)}")]
chatbot_ret += [(f"The number of processed / est. total tokens:", f"{num_tokens_processed} / {num_tokens_total}")]
chatbot_ret += [(f"The dollars of processed / est. total tokens:", f"{dollars_tokens_processed:.2f} / {dollars_tokens_total:.2f}")]
return chatbot_ret
with gr.Blocks() as demo:
gr.Markdown(
"""
Hello friends,
Thanks for your attention on this space. But this space is for my own use, i.e., building a dataset with answers from ChatGPT, and the access key for runtime feedback is only shared to my colleagues.
If you want to ask ChatGPT on Huggingface just as the title says, you can try this [one](https://huggingface.co/spaces/zhangjf/chatbot) I built for public.
"""
)
with gr.Column(variant="panel"):
chatbot = gr.Chatbot()
txt = gr.Textbox(show_label=False, placeholder="Enter your Access Key to access this private space").style(container=False)
with gr.Row():
button_showcase = gr.Button("Show Recent Query-Responses")
button_download = gr.Button("Download All Query-Responses")
button_display = gr.Button("Display Progress Infomation")
downloadfile = gr.File(None, interactive=False, show_label=False, visible=False)
button_showcase.click(fn=showcase, inputs=[txt], outputs=[chatbot])
button_download.click(fn=download, inputs=[txt], outputs=[chatbot, downloadfile])
button_display.click(fn=display, inputs=[txt], outputs=[chatbot])
demo.launch() |