""" """ from typing import Any from typing import Callable from typing import ParamSpec import spaces import torch from torch.utils._pytree import tree_map_only from torchao.quantization import quantize_ from torchao.quantization import Float8DynamicActivationFloat8WeightConfig from torchao.quantization import Int8WeightOnlyConfig from optimization_utils import capture_component_call from optimization_utils import aoti_compile from optimization_utils import drain_module_parameters P = ParamSpec('P') LATENT_FRAMES_DIM = torch.export.Dim('num_latent_frames', min=8, max=81) LATENT_PATCHED_HEIGHT_DIM = torch.export.Dim('latent_patched_height', min=30, max=52) LATENT_PATCHED_WIDTH_DIM = torch.export.Dim('latent_patched_width', min=30, max=52) TRANSFORMER_DYNAMIC_SHAPES = { 'hidden_states': { 2: LATENT_FRAMES_DIM, 3: 2 * LATENT_PATCHED_HEIGHT_DIM, 4: 2 * LATENT_PATCHED_WIDTH_DIM, }, } INDUCTOR_CONFIGS = { 'conv_1x1_as_mm': True, 'epilogue_fusion': False, 'coordinate_descent_tuning': True, 'coordinate_descent_check_all_directions': True, 'max_autotune': True, 'triton.cudagraphs': True, } def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs): @spaces.GPU(duration=1500) def compile_transformer(): # This LoRA fusion part remains the same pipeline.load_lora_weights( "Kijai/WanVideo_comfy", weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors", adapter_name="lightx2v" ) kwargs_lora = {} kwargs_lora["load_into_transformer_2"] = True pipeline.load_lora_weights( "Kijai/WanVideo_comfy", weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors", adapter_name="lightx2v_2", **kwargs_lora ) pipeline.set_adapters(["lightx2v", "lightx2v_2"], adapter_weights=[1., 1.]) pipeline.fuse_lora(adapter_names=["lightx2v"], lora_scale=3., components=["transformer"]) pipeline.fuse_lora(adapter_names=["lightx2v_2"], lora_scale=1., components=["transformer_2"]) pipeline.unload_lora_weights() with capture_component_call(pipeline, 'transformer') as call: pipeline(*args, **kwargs) dynamic_shapes = tree_map_only((torch.Tensor, bool), lambda t: None, call.kwargs) dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig()) quantize_(pipeline.transformer_2, Float8DynamicActivationFloat8WeightConfig()) exported_1 = torch.export.export( mod=pipeline.transformer, args=call.args, kwargs=call.kwargs, dynamic_shapes=dynamic_shapes, ) exported_2 = torch.export.export( mod=pipeline.transformer_2, args=call.args, kwargs=call.kwargs, dynamic_shapes=dynamic_shapes, ) compiled_1 = aoti_compile(exported_1, INDUCTOR_CONFIGS) compiled_2 = aoti_compile(exported_2, INDUCTOR_CONFIGS) return compiled_1, compiled_2 quantize_(pipeline.text_encoder, Int8WeightOnlyConfig()) compiled_transformer_1, compiled_transformer_2 = compile_transformer() pipeline.transformer.forward = compiled_transformer_1 drain_module_parameters(pipeline.transformer) pipeline.transformer_2.forward = compiled_transformer_2 drain_module_parameters(pipeline.transformer_2)