Spaces:
Running
on
Zero
Running
on
Zero
update optimization
Browse files- optimization.py +21 -45
optimization.py
CHANGED
@@ -14,18 +14,21 @@ from torchao.quantization import Int8WeightOnlyConfig
|
|
14 |
|
15 |
from optimization_utils import capture_component_call
|
16 |
from optimization_utils import aoti_compile
|
17 |
-
from optimization_utils import ZeroGPUCompiledModel
|
18 |
from optimization_utils import drain_module_parameters
|
19 |
|
20 |
|
21 |
P = ParamSpec('P')
|
22 |
|
|
|
23 |
|
24 |
-
|
|
|
25 |
|
26 |
TRANSFORMER_DYNAMIC_SHAPES = {
|
27 |
'hidden_states': {
|
28 |
-
2:
|
|
|
|
|
29 |
},
|
30 |
}
|
31 |
|
@@ -44,6 +47,7 @@ def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kw
|
|
44 |
@spaces.GPU(duration=1500)
|
45 |
def compile_transformer():
|
46 |
|
|
|
47 |
pipeline.load_lora_weights(
|
48 |
"Kijai/WanVideo_comfy",
|
49 |
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
|
@@ -70,61 +74,33 @@ def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kw
|
|
70 |
quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig())
|
71 |
quantize_(pipeline.transformer_2, Float8DynamicActivationFloat8WeightConfig())
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
if hidden_states.shape[-1] > hidden_states.shape[-2]:
|
76 |
-
hidden_states_landscape = hidden_states
|
77 |
-
hidden_states_portrait = hidden_states_transposed
|
78 |
-
else:
|
79 |
-
hidden_states_landscape = hidden_states_transposed
|
80 |
-
hidden_states_portrait = hidden_states
|
81 |
-
|
82 |
-
exported_landscape_1 = torch.export.export(
|
83 |
mod=pipeline.transformer,
|
84 |
args=call.args,
|
85 |
-
kwargs=call.kwargs
|
86 |
dynamic_shapes=dynamic_shapes,
|
87 |
)
|
88 |
|
89 |
-
|
90 |
mod=pipeline.transformer_2,
|
91 |
args=call.args,
|
92 |
-
kwargs=call.kwargs
|
93 |
dynamic_shapes=dynamic_shapes,
|
94 |
)
|
95 |
|
96 |
-
|
97 |
-
|
|
|
|
|
98 |
|
99 |
-
compiled_landscape_2 = ZeroGPUCompiledModel(compiled_landscape_1.archive_file, compiled_portrait_2.weights)
|
100 |
-
compiled_portrait_1 = ZeroGPUCompiledModel(compiled_portrait_2.archive_file, compiled_landscape_1.weights)
|
101 |
-
|
102 |
-
return (
|
103 |
-
compiled_landscape_1,
|
104 |
-
compiled_landscape_2,
|
105 |
-
compiled_portrait_1,
|
106 |
-
compiled_portrait_2,
|
107 |
-
)
|
108 |
|
109 |
quantize_(pipeline.text_encoder, Int8WeightOnlyConfig())
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
if hidden_states.shape[-1] > hidden_states.shape[-2]:
|
115 |
-
return cl1(*args, **kwargs)
|
116 |
-
else:
|
117 |
-
return cp1(*args, **kwargs)
|
118 |
-
|
119 |
-
def combined_transformer_2(*args, **kwargs):
|
120 |
-
hidden_states: torch.Tensor = kwargs['hidden_states']
|
121 |
-
if hidden_states.shape[-1] > hidden_states.shape[-2]:
|
122 |
-
return cl2(*args, **kwargs)
|
123 |
-
else:
|
124 |
-
return cp2(*args, **kwargs)
|
125 |
-
|
126 |
-
pipeline.transformer.forward = combined_transformer_1
|
127 |
drain_module_parameters(pipeline.transformer)
|
128 |
|
129 |
-
pipeline.transformer_2.forward =
|
130 |
drain_module_parameters(pipeline.transformer_2)
|
|
|
14 |
|
15 |
from optimization_utils import capture_component_call
|
16 |
from optimization_utils import aoti_compile
|
|
|
17 |
from optimization_utils import drain_module_parameters
|
18 |
|
19 |
|
20 |
P = ParamSpec('P')
|
21 |
|
22 |
+
LATENT_FRAMES_DIM = torch.export.Dim('num_latent_frames', min=8, max=81)
|
23 |
|
24 |
+
LATENT_PATCHED_HEIGHT_DIM = torch.export.Dim('latent_patched_height', min=30, max=52)
|
25 |
+
LATENT_PATCHED_WIDTH_DIM = torch.export.Dim('latent_patched_width', min=30, max=52)
|
26 |
|
27 |
TRANSFORMER_DYNAMIC_SHAPES = {
|
28 |
'hidden_states': {
|
29 |
+
2: LATENT_FRAMES_DIM,
|
30 |
+
3: 2 * LATENT_PATCHED_HEIGHT_DIM,
|
31 |
+
4: 2 * LATENT_PATCHED_WIDTH_DIM,
|
32 |
},
|
33 |
}
|
34 |
|
|
|
47 |
@spaces.GPU(duration=1500)
|
48 |
def compile_transformer():
|
49 |
|
50 |
+
# This LoRA fusion part remains the same
|
51 |
pipeline.load_lora_weights(
|
52 |
"Kijai/WanVideo_comfy",
|
53 |
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
|
|
|
74 |
quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig())
|
75 |
quantize_(pipeline.transformer_2, Float8DynamicActivationFloat8WeightConfig())
|
76 |
|
77 |
+
|
78 |
+
exported_1 = torch.export.export(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
mod=pipeline.transformer,
|
80 |
args=call.args,
|
81 |
+
kwargs=call.kwargs,
|
82 |
dynamic_shapes=dynamic_shapes,
|
83 |
)
|
84 |
|
85 |
+
exported_2 = torch.export.export(
|
86 |
mod=pipeline.transformer_2,
|
87 |
args=call.args,
|
88 |
+
kwargs=call.kwargs,
|
89 |
dynamic_shapes=dynamic_shapes,
|
90 |
)
|
91 |
|
92 |
+
compiled_1 = aoti_compile(exported_1, INDUCTOR_CONFIGS)
|
93 |
+
compiled_2 = aoti_compile(exported_2, INDUCTOR_CONFIGS)
|
94 |
+
|
95 |
+
return compiled_1, compiled_2
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
quantize_(pipeline.text_encoder, Int8WeightOnlyConfig())
|
99 |
+
|
100 |
+
compiled_transformer_1, compiled_transformer_2 = compile_transformer()
|
101 |
+
|
102 |
+
pipeline.transformer.forward = compiled_transformer_1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
drain_module_parameters(pipeline.transformer)
|
104 |
|
105 |
+
pipeline.transformer_2.forward = compiled_transformer_2
|
106 |
drain_module_parameters(pipeline.transformer_2)
|