Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,42 +3,201 @@ import numpy as np
|
|
| 3 |
import random
|
| 4 |
import torch
|
| 5 |
import spaces
|
|
|
|
|
|
|
| 6 |
|
| 7 |
from PIL import Image
|
| 8 |
-
from diffusers import QwenImageEditPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
import os
|
| 11 |
|
| 12 |
# --- Model Loading ---
|
| 13 |
dtype = torch.bfloat16
|
| 14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
|
| 16 |
-
#
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
"
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
# --- UI Constants and Helpers ---
|
| 24 |
MAX_SEED = np.iinfo(np.int32).max
|
| 25 |
|
| 26 |
-
# --- Main Inference Function
|
| 27 |
-
@spaces.GPU(duration=
|
| 28 |
def infer(
|
| 29 |
image,
|
| 30 |
prompt,
|
| 31 |
seed=42,
|
| 32 |
randomize_seed=False,
|
| 33 |
-
|
| 34 |
-
num_inference_steps=
|
|
|
|
|
|
|
| 35 |
progress=gr.Progress(track_tqdm=True),
|
| 36 |
):
|
| 37 |
"""
|
| 38 |
-
Generates an image using the
|
| 39 |
"""
|
| 40 |
-
# Hardcode the negative prompt as
|
| 41 |
-
negative_prompt = "
|
| 42 |
|
| 43 |
if randomize_seed:
|
| 44 |
seed = random.randint(0, MAX_SEED)
|
|
@@ -46,55 +205,89 @@ def infer(
|
|
| 46 |
# Set up the generator for reproducibility
|
| 47 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 48 |
|
| 49 |
-
print(f"
|
| 50 |
print(f"Negative Prompt: '{negative_prompt}'")
|
| 51 |
-
print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
-
# Generate the image
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
-
return
|
| 65 |
|
| 66 |
# --- Examples and UI Layout ---
|
| 67 |
-
examples = [
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
css = """
|
| 70 |
#col-container {
|
| 71 |
margin: 0 auto;
|
| 72 |
max-width: 1024px;
|
| 73 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
#edit_text{margin-top: -62px !important}
|
| 75 |
"""
|
| 76 |
|
| 77 |
with gr.Blocks(css=css) as demo:
|
| 78 |
with gr.Column(elem_id="col-container"):
|
| 79 |
-
gr.HTML(
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
with gr.Row():
|
| 83 |
with gr.Column():
|
| 84 |
-
input_image = gr.Image(
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
placeholder="describe the edit instruction",
|
| 89 |
-
container=False,
|
| 90 |
)
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
with gr.Accordion("Advanced Settings", open=False):
|
| 96 |
-
# Negative prompt UI element is removed here
|
| 97 |
-
|
| 98 |
seed = gr.Slider(
|
| 99 |
label="Seed",
|
| 100 |
minimum=0,
|
|
@@ -106,23 +299,38 @@ with gr.Blocks(css=css) as demo:
|
|
| 106 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 107 |
|
| 108 |
with gr.Row():
|
| 109 |
-
|
| 110 |
-
label="
|
| 111 |
-
minimum=
|
| 112 |
maximum=10.0,
|
| 113 |
step=0.1,
|
| 114 |
-
value=
|
| 115 |
)
|
| 116 |
|
| 117 |
num_inference_steps = gr.Slider(
|
| 118 |
label="Number of inference steps",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
minimum=1,
|
| 120 |
-
maximum=
|
| 121 |
step=1,
|
| 122 |
-
value=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
)
|
| 124 |
|
| 125 |
-
# gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=False)
|
| 126 |
|
| 127 |
gr.on(
|
| 128 |
triggers=[run_button.click, prompt.submit],
|
|
@@ -130,11 +338,12 @@ with gr.Blocks(css=css) as demo:
|
|
| 130 |
inputs=[
|
| 131 |
input_image,
|
| 132 |
prompt,
|
| 133 |
-
# negative_prompt is no longer an input from the UI
|
| 134 |
seed,
|
| 135 |
randomize_seed,
|
| 136 |
-
|
| 137 |
num_inference_steps,
|
|
|
|
|
|
|
| 138 |
],
|
| 139 |
outputs=[result, seed],
|
| 140 |
)
|
|
|
|
| 3 |
import random
|
| 4 |
import torch
|
| 5 |
import spaces
|
| 6 |
+
import os
|
| 7 |
+
import json
|
| 8 |
|
| 9 |
from PIL import Image
|
| 10 |
+
from diffusers import QwenImageEditPipeline, FlowMatchEulerDiscreteScheduler
|
| 11 |
+
from huggingface_hub import InferenceClient
|
| 12 |
+
import math
|
| 13 |
+
|
| 14 |
+
# --- Prompt Enhancement using Hugging Face InferenceClient ---
|
| 15 |
+
def polish_prompt_hf(original_prompt, system_prompt):
|
| 16 |
+
"""
|
| 17 |
+
Rewrites the prompt using a Hugging Face InferenceClient.
|
| 18 |
+
"""
|
| 19 |
+
# Ensure HF_TOKEN is set
|
| 20 |
+
api_key = os.environ.get("HF_TOKEN")
|
| 21 |
+
if not api_key:
|
| 22 |
+
print("Warning: HF_TOKEN not set. Falling back to original prompt.")
|
| 23 |
+
return original_prompt
|
| 24 |
+
|
| 25 |
+
try:
|
| 26 |
+
# Initialize the client
|
| 27 |
+
client = InferenceClient(
|
| 28 |
+
provider="cerebras",
|
| 29 |
+
api_key=api_key,
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
# Format the messages for the chat completions API
|
| 33 |
+
messages = [
|
| 34 |
+
{"role": "system", "content": system_prompt},
|
| 35 |
+
{"role": "user", "content": original_prompt}
|
| 36 |
+
]
|
| 37 |
+
|
| 38 |
+
# Call the API
|
| 39 |
+
completion = client.chat.completions.create(
|
| 40 |
+
model="Qwen/Qwen3-235B-A22B-Instruct-2507",
|
| 41 |
+
messages=messages,
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
# Parse the response
|
| 45 |
+
result = completion.choices[0].message.content
|
| 46 |
+
|
| 47 |
+
# Try to extract JSON if present
|
| 48 |
+
if '{"Rewritten"' in result:
|
| 49 |
+
try:
|
| 50 |
+
# Clean up the response
|
| 51 |
+
result = result.replace('```json', '').replace('```', '')
|
| 52 |
+
result_json = json.loads(result)
|
| 53 |
+
polished_prompt = result_json.get('Rewritten', result)
|
| 54 |
+
except:
|
| 55 |
+
polished_prompt = result
|
| 56 |
+
else:
|
| 57 |
+
polished_prompt = result
|
| 58 |
+
|
| 59 |
+
polished_prompt = polished_prompt.strip().replace("\n", " ")
|
| 60 |
+
return polished_prompt
|
| 61 |
+
|
| 62 |
+
except Exception as e:
|
| 63 |
+
print(f"Error during API call to Hugging Face: {e}")
|
| 64 |
+
# Fallback to original prompt if enhancement fails
|
| 65 |
+
return original_prompt
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def polish_prompt(prompt, img):
|
| 69 |
+
"""
|
| 70 |
+
Main function to polish prompts for image editing using HF inference.
|
| 71 |
+
"""
|
| 72 |
+
SYSTEM_PROMPT = '''
|
| 73 |
+
# Edit Instruction Rewriter
|
| 74 |
+
You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable professional-level edit instruction based on the user-provided instruction and the image to be edited.
|
| 75 |
+
|
| 76 |
+
Please strictly follow the rewriting rules below:
|
| 77 |
+
|
| 78 |
+
## 1. General Principles
|
| 79 |
+
- Keep the rewritten prompt **concise**. Avoid overly long sentences and reduce unnecessary descriptive language.
|
| 80 |
+
- If the instruction is contradictory, vague, or unachievable, prioritize reasonable inference and correction, and supplement details when necessary.
|
| 81 |
+
- Keep the core intention of the original instruction unchanged, only enhancing its clarity, rationality, and visual feasibility.
|
| 82 |
+
- All added objects or modifications must align with the logic and style of the edited input image's overall scene.
|
| 83 |
+
|
| 84 |
+
## 2. Task Type Handling Rules
|
| 85 |
+
### 1. Add, Delete, Replace Tasks
|
| 86 |
+
- If the instruction is clear (already includes task type, target entity, position, quantity, attributes), preserve the original intent and only refine the grammar.
|
| 87 |
+
- If the description is vague, supplement with minimal but sufficient details (category, color, size, orientation, position, etc.). For example:
|
| 88 |
+
> Original: "Add an animal"
|
| 89 |
+
> Rewritten: "Add a light-gray cat in the bottom-right corner, sitting and facing the camera"
|
| 90 |
+
- Remove meaningless instructions: e.g., "Add 0 objects" should be ignored or flagged as invalid.
|
| 91 |
+
- For replacement tasks, specify "Replace Y with X" and briefly describe the key visual features of X.
|
| 92 |
+
|
| 93 |
+
### 2. Text Editing Tasks
|
| 94 |
+
- All text content must be enclosed in English double quotes " ". Do not translate or alter the original language of the text, and do not change the capitalization.
|
| 95 |
+
- **For text replacement tasks, always use the fixed template:**
|
| 96 |
+
- Replace "xx" to "yy".
|
| 97 |
+
- Replace the xx bounding box to "yy".
|
| 98 |
+
- If the user does not specify text content, infer and add concise text based on the instruction and the input image's context. For example:
|
| 99 |
+
> Original: "Add a line of text" (poster)
|
| 100 |
+
> Rewritten: "Add text "LIMITED EDITION" at the top center with slight shadow"
|
| 101 |
+
- Specify text position, color, and layout in a concise way.
|
| 102 |
+
|
| 103 |
+
### 3. Human Editing Tasks
|
| 104 |
+
- Maintain the person's core visual consistency (ethnicity, gender, age, hairstyle, expression, outfit, etc.).
|
| 105 |
+
- If modifying appearance (e.g., clothes, hairstyle), ensure the new element is consistent with the original style.
|
| 106 |
+
- **For expression changes, they must be natural and subtle, never exaggerated.**
|
| 107 |
+
- If deletion is not specifically emphasized, the most important subject in the original image (e.g., a person, an animal) should be preserved.
|
| 108 |
+
- For background change tasks, emphasize maintaining subject consistency at first.
|
| 109 |
+
- Example:
|
| 110 |
+
> Original: "Change the person's hat"
|
| 111 |
+
> Rewritten: "Replace the man's hat with a dark brown beret; keep smile, short hair, and gray jacket unchanged"
|
| 112 |
+
|
| 113 |
+
### 4. Style Transformation or Enhancement Tasks
|
| 114 |
+
- If a style is specified, describe it concisely with key visual traits. For example:
|
| 115 |
+
> Original: "Disco style"
|
| 116 |
+
> Rewritten: "1970s disco: flashing lights, disco ball, mirrored walls, colorful tones"
|
| 117 |
+
- If the instruction says "use reference style" or "keep current style," analyze the input image, extract main features (color, composition, texture, lighting, art style), and integrate them concisely.
|
| 118 |
+
- **For coloring tasks, including restoring old photos, always use the fixed template:** "Restore old photograph, remove scratches, reduce noise, enhance details, high resolution, realistic, natural skin tones, clear facial features, no distortion, vintage photo restoration"
|
| 119 |
+
- If there are other changes, place the style description at the end.
|
| 120 |
+
|
| 121 |
+
## 3. Rationality and Logic Checks
|
| 122 |
+
- Resolve contradictory instructions: e.g., "Remove all trees but keep all trees" should be logically corrected.
|
| 123 |
+
- Add missing key information: if position is unspecified, choose a reasonable area based on composition (near subject, empty space, center/edges).
|
| 124 |
+
|
| 125 |
+
# Output Format
|
| 126 |
+
Return only the rewritten instruction text directly, without JSON formatting or any other wrapper.
|
| 127 |
+
'''
|
| 128 |
+
|
| 129 |
+
# Note: We're not actually using the image in the HF version,
|
| 130 |
+
# but keeping the interface consistent
|
| 131 |
+
full_prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {prompt}\n\nRewritten Prompt:"
|
| 132 |
+
|
| 133 |
+
return polish_prompt_hf(full_prompt, SYSTEM_PROMPT)
|
| 134 |
|
|
|
|
| 135 |
|
| 136 |
# --- Model Loading ---
|
| 137 |
dtype = torch.bfloat16
|
| 138 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 139 |
|
| 140 |
+
# Scheduler configuration for Lightning
|
| 141 |
+
scheduler_config = {
|
| 142 |
+
"base_image_seq_len": 256,
|
| 143 |
+
"base_shift": math.log(3),
|
| 144 |
+
"invert_sigmas": False,
|
| 145 |
+
"max_image_seq_len": 8192,
|
| 146 |
+
"max_shift": math.log(3),
|
| 147 |
+
"num_train_timesteps": 1000,
|
| 148 |
+
"shift": 1.0,
|
| 149 |
+
"shift_terminal": None,
|
| 150 |
+
"stochastic_sampling": False,
|
| 151 |
+
"time_shift_type": "exponential",
|
| 152 |
+
"use_beta_sigmas": False,
|
| 153 |
+
"use_dynamic_shifting": True,
|
| 154 |
+
"use_exponential_sigmas": False,
|
| 155 |
+
"use_karras_sigmas": False,
|
| 156 |
+
}
|
| 157 |
+
|
| 158 |
+
# Initialize scheduler with Lightning config
|
| 159 |
+
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
|
| 160 |
+
|
| 161 |
+
# Load the edit pipeline with Lightning scheduler
|
| 162 |
+
pipe = QwenImageEditPipeline.from_pretrained(
|
| 163 |
+
"Qwen/Qwen-Image-Edit",
|
| 164 |
+
scheduler=scheduler,
|
| 165 |
+
torch_dtype=dtype
|
| 166 |
+
).to(device)
|
| 167 |
+
|
| 168 |
+
# Load Lightning LoRA weights for acceleration
|
| 169 |
+
try:
|
| 170 |
+
pipe.load_lora_weights(
|
| 171 |
+
"lightx2v/Qwen-Image-Lightning",
|
| 172 |
+
weight_name="Qwen-Image-Lightning-8steps-V1.1.safetensors"
|
| 173 |
+
)
|
| 174 |
+
pipe.fuse_lora()
|
| 175 |
+
print("Successfully loaded Lightning LoRA weights")
|
| 176 |
+
except Exception as e:
|
| 177 |
+
print(f"Warning: Could not load Lightning LoRA weights: {e}")
|
| 178 |
+
print("Continuing with base model...")
|
| 179 |
|
| 180 |
# --- UI Constants and Helpers ---
|
| 181 |
MAX_SEED = np.iinfo(np.int32).max
|
| 182 |
|
| 183 |
+
# --- Main Inference Function ---
|
| 184 |
+
@spaces.GPU(duration=60)
|
| 185 |
def infer(
|
| 186 |
image,
|
| 187 |
prompt,
|
| 188 |
seed=42,
|
| 189 |
randomize_seed=False,
|
| 190 |
+
true_guidance_scale=1.0,
|
| 191 |
+
num_inference_steps=8, # Default to 8 steps for fast inference
|
| 192 |
+
rewrite_prompt=True,
|
| 193 |
+
num_images_per_prompt=1,
|
| 194 |
progress=gr.Progress(track_tqdm=True),
|
| 195 |
):
|
| 196 |
"""
|
| 197 |
+
Generates an edited image using the Qwen-Image-Edit pipeline with Lightning acceleration.
|
| 198 |
"""
|
| 199 |
+
# Hardcode the negative prompt as in the original
|
| 200 |
+
negative_prompt = " "
|
| 201 |
|
| 202 |
if randomize_seed:
|
| 203 |
seed = random.randint(0, MAX_SEED)
|
|
|
|
| 205 |
# Set up the generator for reproducibility
|
| 206 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 207 |
|
| 208 |
+
print(f"Original prompt: '{prompt}'")
|
| 209 |
print(f"Negative Prompt: '{negative_prompt}'")
|
| 210 |
+
print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {true_guidance_scale}")
|
| 211 |
+
|
| 212 |
+
if rewrite_prompt:
|
| 213 |
+
prompt = polish_prompt(prompt, image)
|
| 214 |
+
print(f"Rewritten Prompt: {prompt}")
|
| 215 |
|
| 216 |
+
# Generate the edited image
|
| 217 |
+
try:
|
| 218 |
+
images = pipe(
|
| 219 |
+
image,
|
| 220 |
+
prompt=prompt,
|
| 221 |
+
negative_prompt=negative_prompt,
|
| 222 |
+
num_inference_steps=num_inference_steps,
|
| 223 |
+
generator=generator,
|
| 224 |
+
true_cfg_scale=true_guidance_scale,
|
| 225 |
+
num_images_per_prompt=num_images_per_prompt
|
| 226 |
+
).images
|
| 227 |
+
except Exception as e:
|
| 228 |
+
print(f"Error during inference: {e}")
|
| 229 |
+
raise e
|
| 230 |
|
| 231 |
+
return images, seed
|
| 232 |
|
| 233 |
# --- Examples and UI Layout ---
|
| 234 |
+
examples = [
|
| 235 |
+
# You can add example pairs of [image_path, prompt] here
|
| 236 |
+
# ["path/to/image1.jpg", "Replace the background with a beach scene"],
|
| 237 |
+
# ["path/to/image2.jpg", "Add a red hat to the person"],
|
| 238 |
+
]
|
| 239 |
|
| 240 |
css = """
|
| 241 |
#col-container {
|
| 242 |
margin: 0 auto;
|
| 243 |
max-width: 1024px;
|
| 244 |
}
|
| 245 |
+
#logo-title {
|
| 246 |
+
text-align: center;
|
| 247 |
+
}
|
| 248 |
+
#logo-title img {
|
| 249 |
+
width: 400px;
|
| 250 |
+
}
|
| 251 |
#edit_text{margin-top: -62px !important}
|
| 252 |
"""
|
| 253 |
|
| 254 |
with gr.Blocks(css=css) as demo:
|
| 255 |
with gr.Column(elem_id="col-container"):
|
| 256 |
+
gr.HTML("""
|
| 257 |
+
<div id="logo-title">
|
| 258 |
+
<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_edit_logo.png" alt="Qwen-Image Edit Logo" width="400" style="display: block; margin: 0 auto;">
|
| 259 |
+
<h2 style="font-style: italic;color: #5b47d1;margin-top: -33px !important;margin-left: 133px;">Fast, 8-steps with Lightning LoRA</h2>
|
| 260 |
+
</div>
|
| 261 |
+
""")
|
| 262 |
+
gr.Markdown("""
|
| 263 |
+
[Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series.
|
| 264 |
+
This demo uses the [Qwen-Image-Lightning](https://huggingface.co/lightx2v/Qwen-Image-Lightning) LoRA for accelerated inference.
|
| 265 |
+
Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit) to run locally with ComfyUI or diffusers.
|
| 266 |
+
""")
|
| 267 |
+
|
| 268 |
with gr.Row():
|
| 269 |
with gr.Column():
|
| 270 |
+
input_image = gr.Image(
|
| 271 |
+
label="Input Image",
|
| 272 |
+
show_label=True,
|
| 273 |
+
type="pil"
|
|
|
|
|
|
|
| 274 |
)
|
| 275 |
+
result = gr.Gallery(
|
| 276 |
+
label="Result",
|
| 277 |
+
show_label=True,
|
| 278 |
+
type="pil"
|
| 279 |
+
)
|
| 280 |
+
|
| 281 |
+
with gr.Row():
|
| 282 |
+
prompt = gr.Text(
|
| 283 |
+
label="Edit Instruction",
|
| 284 |
+
show_label=False,
|
| 285 |
+
placeholder="Describe the edit instruction (e.g., 'Replace the background with a sunset', 'Add a red hat', 'Remove the person')",
|
| 286 |
+
container=False,
|
| 287 |
+
)
|
| 288 |
+
run_button = gr.Button("Edit!", variant="primary")
|
| 289 |
|
| 290 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
|
|
|
| 291 |
seed = gr.Slider(
|
| 292 |
label="Seed",
|
| 293 |
minimum=0,
|
|
|
|
| 299 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 300 |
|
| 301 |
with gr.Row():
|
| 302 |
+
true_guidance_scale = gr.Slider(
|
| 303 |
+
label="True guidance scale",
|
| 304 |
+
minimum=1.0,
|
| 305 |
maximum=10.0,
|
| 306 |
step=0.1,
|
| 307 |
+
value=1.0
|
| 308 |
)
|
| 309 |
|
| 310 |
num_inference_steps = gr.Slider(
|
| 311 |
label="Number of inference steps",
|
| 312 |
+
minimum=4,
|
| 313 |
+
maximum=28,
|
| 314 |
+
step=1,
|
| 315 |
+
value=8
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
+
with gr.Row():
|
| 319 |
+
num_images_per_prompt = gr.Slider(
|
| 320 |
+
label="Number of images per prompt",
|
| 321 |
minimum=1,
|
| 322 |
+
maximum=4,
|
| 323 |
step=1,
|
| 324 |
+
value=1,
|
| 325 |
+
visible=False
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
rewrite_prompt = gr.Checkbox(
|
| 329 |
+
label="Enhance prompt (using HF Inference)",
|
| 330 |
+
value=True
|
| 331 |
)
|
| 332 |
|
| 333 |
+
# gr.Examples(examples=examples, inputs=[input_image, prompt], outputs=[result, seed], fn=infer, cache_examples=False)
|
| 334 |
|
| 335 |
gr.on(
|
| 336 |
triggers=[run_button.click, prompt.submit],
|
|
|
|
| 338 |
inputs=[
|
| 339 |
input_image,
|
| 340 |
prompt,
|
|
|
|
| 341 |
seed,
|
| 342 |
randomize_seed,
|
| 343 |
+
true_guidance_scale,
|
| 344 |
num_inference_steps,
|
| 345 |
+
rewrite_prompt,
|
| 346 |
+
num_images_per_prompt,
|
| 347 |
],
|
| 348 |
outputs=[result, seed],
|
| 349 |
)
|