Spaces:
Running
on
Zero
Running
on
Zero
| """ | |
| """ | |
| from typing import Any | |
| from typing import Callable | |
| from typing import ParamSpec | |
| from torchao.quantization import quantize_ | |
| from torchao.quantization import Float8DynamicActivationFloat8WeightConfig | |
| import spaces | |
| import torch | |
| from torch.utils._pytree import tree_map | |
| P = ParamSpec('P') | |
| TRANSFORMER_IMAGE_SEQ_LENGTH_DIM = torch.export.Dim('image_seq_length') | |
| TRANSFORMER_TEXT_SEQ_LENGTH_DIM = torch.export.Dim('text_seq_length') | |
| TRANSFORMER_DYNAMIC_SHAPES = { | |
| 'hidden_states': { | |
| 1: TRANSFORMER_IMAGE_SEQ_LENGTH_DIM, | |
| }, | |
| 'encoder_hidden_states': { | |
| 1: TRANSFORMER_TEXT_SEQ_LENGTH_DIM, | |
| }, | |
| 'encoder_hidden_states_mask': { | |
| 1: TRANSFORMER_TEXT_SEQ_LENGTH_DIM, | |
| }, | |
| 'image_rotary_emb': ({ | |
| 0: TRANSFORMER_IMAGE_SEQ_LENGTH_DIM, | |
| }, { | |
| 0: TRANSFORMER_TEXT_SEQ_LENGTH_DIM, | |
| }), | |
| } | |
| INDUCTOR_CONFIGS = { | |
| 'conv_1x1_as_mm': True, | |
| 'epilogue_fusion': False, | |
| 'coordinate_descent_tuning': True, | |
| 'coordinate_descent_check_all_directions': True, | |
| 'max_autotune': True, | |
| 'triton.cudagraphs': True, | |
| } | |
| def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs): | |
| def compile_transformer(): | |
| pipeline.load_lora_weights( | |
| "lightx2v/Qwen-Image-Lightning", | |
| weight_name="Qwen-Image-Lightning-8steps-V1.1.safetensors" | |
| ) | |
| pipeline.fuse_lora() | |
| pipeline.unload_lora_weights() | |
| with spaces.aoti_capture(pipeline.transformer) as call: | |
| pipeline(*args, **kwargs) | |
| dynamic_shapes = tree_map(lambda t: None, call.kwargs) | |
| dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES | |
| # quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig()) | |
| exported = torch.export.export( | |
| mod=pipeline.transformer, | |
| args=call.args, | |
| kwargs=call.kwargs, | |
| dynamic_shapes=dynamic_shapes, | |
| ) | |
| return spaces.aoti_compile(exported, INDUCTOR_CONFIGS) | |
| spaces.aoti_apply(compile_transformer(), pipeline.transformer) | |