Spaces:
Running
on
Zero
Running
on
Zero
Upload 2 files
Browse files- optimization.py +65 -0
- optimization_utils.py +150 -0
optimization.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
"""
|
| 3 |
+
|
| 4 |
+
from typing import Any
|
| 5 |
+
from typing import Callable
|
| 6 |
+
from typing import ParamSpec
|
| 7 |
+
|
| 8 |
+
import spaces
|
| 9 |
+
import torch
|
| 10 |
+
from torch.utils._pytree import tree_map_only
|
| 11 |
+
from torchao.quantization import quantize_
|
| 12 |
+
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig
|
| 13 |
+
|
| 14 |
+
from optimization_utils import capture_component_call
|
| 15 |
+
from optimization_utils import aoti_compile
|
| 16 |
+
from optimization_utils import cudagraph
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
P = ParamSpec('P')
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
TRANSFORMER_HIDDEN_DIM = torch.export.Dim('hidden', min=4096, max=8212)
|
| 23 |
+
|
| 24 |
+
TRANSFORMER_DYNAMIC_SHAPES = {
|
| 25 |
+
'hidden_states': {1: TRANSFORMER_HIDDEN_DIM},
|
| 26 |
+
'img_ids': {0: TRANSFORMER_HIDDEN_DIM},
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
+
INDUCTOR_CONFIGS = {
|
| 30 |
+
'conv_1x1_as_mm': True,
|
| 31 |
+
'epilogue_fusion': False,
|
| 32 |
+
'coordinate_descent_tuning': True,
|
| 33 |
+
'coordinate_descent_check_all_directions': True,
|
| 34 |
+
'max_autotune': True,
|
| 35 |
+
'triton.cudagraphs': True,
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
|
| 40 |
+
|
| 41 |
+
@spaces.GPU(duration=1500)
|
| 42 |
+
def compile_transformer():
|
| 43 |
+
|
| 44 |
+
with capture_component_call(pipeline, 'transformer') as call:
|
| 45 |
+
pipeline(*args, **kwargs)
|
| 46 |
+
|
| 47 |
+
dynamic_shapes = tree_map_only((torch.Tensor, bool), lambda t: None, call.kwargs)
|
| 48 |
+
dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES
|
| 49 |
+
|
| 50 |
+
pipeline.transformer.fuse_qkv_projections()
|
| 51 |
+
|
| 52 |
+
quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig())
|
| 53 |
+
|
| 54 |
+
exported = torch.export.export(
|
| 55 |
+
mod=pipeline.transformer,
|
| 56 |
+
args=call.args,
|
| 57 |
+
kwargs=call.kwargs,
|
| 58 |
+
dynamic_shapes=dynamic_shapes,
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
return aoti_compile(exported, INDUCTOR_CONFIGS)
|
| 62 |
+
|
| 63 |
+
transformer_config = pipeline.transformer.config
|
| 64 |
+
pipeline.transformer = compile_transformer()
|
| 65 |
+
pipeline.transformer.config = transformer_config # pyright: ignore[reportAttributeAccessIssue]
|
optimization_utils.py
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
"""
|
| 3 |
+
import contextlib
|
| 4 |
+
from contextvars import ContextVar
|
| 5 |
+
from io import BytesIO
|
| 6 |
+
from typing import Any
|
| 7 |
+
from typing import Callable
|
| 8 |
+
from typing import ParamSpec
|
| 9 |
+
from typing import TypeVar
|
| 10 |
+
from typing import cast
|
| 11 |
+
from unittest.mock import patch
|
| 12 |
+
|
| 13 |
+
import torch
|
| 14 |
+
from torch.utils._pytree import tree_map_only
|
| 15 |
+
from torch._inductor.package.package import package_aoti
|
| 16 |
+
from torch.export.pt2_archive._package import AOTICompiledModel
|
| 17 |
+
from torch.export.pt2_archive._package_weights import TensorProperties
|
| 18 |
+
from torch.export.pt2_archive._package_weights import Weights
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
P = ParamSpec('P')
|
| 22 |
+
T = TypeVar('T')
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
INDUCTOR_CONFIGS_OVERRIDES = {
|
| 26 |
+
'aot_inductor.package_constants_in_so': False,
|
| 27 |
+
'aot_inductor.package_constants_on_disk': True,
|
| 28 |
+
'aot_inductor.package': True,
|
| 29 |
+
}
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class ZeroGPUCompiledModel:
|
| 33 |
+
def __init__(self, archive_file: torch.types.FileLike, weights: Weights, cuda: bool = False):
|
| 34 |
+
self.archive_file = archive_file
|
| 35 |
+
self.weights = weights
|
| 36 |
+
if cuda:
|
| 37 |
+
self.weights_to_cuda_()
|
| 38 |
+
self.compiled_model: ContextVar[AOTICompiledModel | None] = ContextVar('compiled_model', default=None)
|
| 39 |
+
def weights_to_cuda_(self):
|
| 40 |
+
for name in self.weights:
|
| 41 |
+
tensor, properties = self.weights.get_weight(name)
|
| 42 |
+
self.weights[name] = (tensor.to('cuda'), properties)
|
| 43 |
+
def __call__(self, *args, **kwargs):
|
| 44 |
+
if (compiled_model := self.compiled_model.get()) is None:
|
| 45 |
+
constants_map = {name: value[0] for name, value in self.weights.items()}
|
| 46 |
+
compiled_model = cast(AOTICompiledModel, torch._inductor.aoti_load_package(self.archive_file))
|
| 47 |
+
compiled_model.load_constants(constants_map, check_full_update=True, user_managed=True)
|
| 48 |
+
self.compiled_model.set(compiled_model)
|
| 49 |
+
return compiled_model(*args, **kwargs)
|
| 50 |
+
def __reduce__(self):
|
| 51 |
+
weight_dict: dict[str, tuple[torch.Tensor, TensorProperties]] = {}
|
| 52 |
+
for name in self.weights:
|
| 53 |
+
tensor, properties = self.weights.get_weight(name)
|
| 54 |
+
tensor_ = torch.empty_like(tensor, device='cpu').pin_memory()
|
| 55 |
+
weight_dict[name] = (tensor_.copy_(tensor).detach().share_memory_(), properties)
|
| 56 |
+
return ZeroGPUCompiledModel, (self.archive_file, Weights(weight_dict), True)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def aoti_compile(
|
| 60 |
+
exported_program: torch.export.ExportedProgram,
|
| 61 |
+
inductor_configs: dict[str, Any] | None = None,
|
| 62 |
+
):
|
| 63 |
+
inductor_configs = (inductor_configs or {}) | INDUCTOR_CONFIGS_OVERRIDES
|
| 64 |
+
gm = cast(torch.fx.GraphModule, exported_program.module())
|
| 65 |
+
assert exported_program.example_inputs is not None
|
| 66 |
+
args, kwargs = exported_program.example_inputs
|
| 67 |
+
artifacts = torch._inductor.aot_compile(gm, args, kwargs, options=inductor_configs)
|
| 68 |
+
archive_file = BytesIO()
|
| 69 |
+
files: list[str | Weights] = [file for file in artifacts if isinstance(file, str)]
|
| 70 |
+
package_aoti(archive_file, files)
|
| 71 |
+
weights, = (artifact for artifact in artifacts if isinstance(artifact, Weights))
|
| 72 |
+
return ZeroGPUCompiledModel(archive_file, weights)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def cudagraph(fn: Callable[P, list[torch.Tensor]]):
|
| 76 |
+
|
| 77 |
+
graphs = {}
|
| 78 |
+
|
| 79 |
+
def fn_(*args: P.args, **kwargs: P.kwargs):
|
| 80 |
+
|
| 81 |
+
key = hash(tuple(
|
| 82 |
+
tuple(kwarg.shape)
|
| 83 |
+
for a in sorted(kwargs.keys())
|
| 84 |
+
if isinstance((kwarg := kwargs[a]), torch.Tensor)
|
| 85 |
+
))
|
| 86 |
+
|
| 87 |
+
if key in graphs:
|
| 88 |
+
wrapped, *_ = graphs[key]
|
| 89 |
+
return wrapped(*args, **kwargs)
|
| 90 |
+
|
| 91 |
+
graph = torch.cuda.CUDAGraph()
|
| 92 |
+
in_args, in_kwargs = tree_map_only(torch.Tensor, lambda t: t.clone(), (args, kwargs))
|
| 93 |
+
in_args, in_kwargs = _cast_as((args, kwargs), (in_args, in_kwargs))
|
| 94 |
+
|
| 95 |
+
fn(*in_args, **in_kwargs)
|
| 96 |
+
with torch.cuda.graph(graph):
|
| 97 |
+
out_tensors = fn(*in_args, **in_kwargs)
|
| 98 |
+
|
| 99 |
+
def wrapped(*args: P.args, **kwargs: P.kwargs):
|
| 100 |
+
for a, b in zip(in_args, args):
|
| 101 |
+
if isinstance(a, torch.Tensor):
|
| 102 |
+
assert isinstance(b, torch.Tensor)
|
| 103 |
+
a.copy_(b)
|
| 104 |
+
for key in kwargs:
|
| 105 |
+
if isinstance((kwarg := kwargs[key]), torch.Tensor):
|
| 106 |
+
assert isinstance((in_kwarg := in_kwargs[key]), torch.Tensor)
|
| 107 |
+
in_kwarg.copy_(kwarg)
|
| 108 |
+
graph.replay()
|
| 109 |
+
return [tensor.clone() for tensor in out_tensors]
|
| 110 |
+
|
| 111 |
+
graphs[key] = (wrapped, graph, in_args, in_kwargs, out_tensors)
|
| 112 |
+
return wrapped(*args, **kwargs)
|
| 113 |
+
|
| 114 |
+
return fn_
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
@contextlib.contextmanager
|
| 118 |
+
def capture_component_call(
|
| 119 |
+
pipeline: Any,
|
| 120 |
+
component_name: str,
|
| 121 |
+
component_method='forward',
|
| 122 |
+
):
|
| 123 |
+
|
| 124 |
+
class CapturedCallException(Exception):
|
| 125 |
+
def __init__(self, *args, **kwargs):
|
| 126 |
+
super().__init__()
|
| 127 |
+
self.args = args
|
| 128 |
+
self.kwargs = kwargs
|
| 129 |
+
|
| 130 |
+
class CapturedCall:
|
| 131 |
+
def __init__(self):
|
| 132 |
+
self.args: tuple[Any, ...] = ()
|
| 133 |
+
self.kwargs: dict[str, Any] = {}
|
| 134 |
+
|
| 135 |
+
component = getattr(pipeline, component_name)
|
| 136 |
+
captured_call = CapturedCall()
|
| 137 |
+
|
| 138 |
+
def capture_call(*args, **kwargs):
|
| 139 |
+
raise CapturedCallException(*args, **kwargs)
|
| 140 |
+
|
| 141 |
+
with patch.object(component, component_method, new=capture_call):
|
| 142 |
+
try:
|
| 143 |
+
yield captured_call
|
| 144 |
+
except CapturedCallException as e:
|
| 145 |
+
captured_call.args = e.args
|
| 146 |
+
captured_call.kwargs = e.kwargs
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def _cast_as(type_from: T, value: Any) -> T:
|
| 150 |
+
return value
|