from datetime import datetime import gradio as gr import spaces import torch from diffusers import FluxPipeline from optimization import optimize_pipeline_ pipeline = FluxPipeline.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.bfloat16).to('cuda') optimize_pipeline_(pipeline, "prompt") @spaces.GPU def generate_image(prompt: str, progress=gr.Progress(track_tqdm=True)): generator = torch.Generator(device='cuda').manual_seed(42) t0 = datetime.now() output = pipeline( prompt=prompt, num_inference_steps=28, generator=generator, ) return [(output.images[0], f'{(datetime.now() - t0).total_seconds():.2f}s')] gr.Interface( fn=generate_image, inputs=gr.Text(label="Prompt"), outputs=gr.Gallery(), examples=["A cat playing with a ball of yarn"], cache_examples=False, ).launch()