Spaces:
Running
on
Zero
Running
on
Zero
Touch ups
Browse files
app.py
CHANGED
@@ -1,15 +1,12 @@
|
|
1 |
"""
|
2 |
"""
|
3 |
-
from datetime import datetime
|
4 |
-
t0 = datetime.now()
|
5 |
-
|
6 |
# Upgrade PyTorch
|
7 |
import os
|
8 |
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
|
9 |
-
print('torch upgrade', -(t0 - (t0 := datetime.now())))
|
10 |
|
11 |
# Actual app.py
|
12 |
import os
|
|
|
13 |
|
14 |
import gradio as gr
|
15 |
import spaces
|
@@ -22,7 +19,6 @@ from zerogpu import aoti_compile
|
|
22 |
|
23 |
|
24 |
pipeline = FluxPipeline.from_pretrained('black-forest-labs/FLUX.1-schnell', torch_dtype=torch.bfloat16).to('cuda')
|
25 |
-
print('FluxPipeline.from_pretrained', -(t0 - (t0 := datetime.now())))
|
26 |
|
27 |
|
28 |
@spaces.GPU(duration=1500)
|
@@ -70,17 +66,16 @@ transformer_config = pipeline.transformer.config
|
|
70 |
pipeline.transformer = compile_transformer()
|
71 |
pipeline.transformer.config = transformer_config
|
72 |
|
|
|
73 |
@spaces.GPU
|
74 |
-
def
|
75 |
-
|
76 |
images = []
|
77 |
for _ in range(4):
|
78 |
-
|
79 |
-
|
|
|
80 |
return images
|
81 |
|
82 |
|
83 |
-
|
84 |
-
return _generate_image(prompt, datetime.now())
|
85 |
-
|
86 |
-
gr.Interface(generate_image, gr.Text(), gr.Gallery()).launch(show_error=True)
|
|
|
1 |
"""
|
2 |
"""
|
|
|
|
|
|
|
3 |
# Upgrade PyTorch
|
4 |
import os
|
5 |
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
|
|
|
6 |
|
7 |
# Actual app.py
|
8 |
import os
|
9 |
+
from datetime import datetime
|
10 |
|
11 |
import gradio as gr
|
12 |
import spaces
|
|
|
19 |
|
20 |
|
21 |
pipeline = FluxPipeline.from_pretrained('black-forest-labs/FLUX.1-schnell', torch_dtype=torch.bfloat16).to('cuda')
|
|
|
22 |
|
23 |
|
24 |
@spaces.GPU(duration=1500)
|
|
|
66 |
pipeline.transformer = compile_transformer()
|
67 |
pipeline.transformer.config = transformer_config
|
68 |
|
69 |
+
|
70 |
@spaces.GPU
|
71 |
+
def generate_image(prompt: str, progress=gr.Progress(track_tqdm=True)):
|
72 |
+
t0 = datetime.now()
|
73 |
images = []
|
74 |
for _ in range(4):
|
75 |
+
image = pipeline(prompt, num_inference_steps=4).images[0]
|
76 |
+
elapsed = -(t0 - (t0 := datetime.now()))
|
77 |
+
images += [(image, f'{elapsed.total_seconds():.2f}s')]
|
78 |
return images
|
79 |
|
80 |
|
81 |
+
gr.Interface(generate_image, gr.Text(), gr.Gallery(rows=3, columns=3, height='60vh')).launch()
|
|
|
|
|
|