Spaces:
Runtime error
Runtime error
Add streamlit application
Browse filesSigned-off-by: airh4ck <[email protected]>
- app.py +5 -0
- segmentation.py +44 -0
- streamlit_config.py +66 -0
app.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit_config as st
|
2 |
+
|
3 |
+
if __name__ == "__main__":
|
4 |
+
st.init()
|
5 |
+
st.run()
|
segmentation.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
|
2 |
+
from transformers.modeling_outputs import SemanticSegmenterOutput
|
3 |
+
from transformers.feature_extraction_utils import BatchFeature
|
4 |
+
from PIL import Image
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import numpy as np
|
8 |
+
import seaborn as sns
|
9 |
+
import itertools
|
10 |
+
|
11 |
+
|
12 |
+
def create_model():
|
13 |
+
return SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
|
14 |
+
|
15 |
+
|
16 |
+
def create_feature_extractor():
|
17 |
+
return SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
|
18 |
+
|
19 |
+
|
20 |
+
def postprocess(masks, height, width):
|
21 |
+
masks = F.interpolate(masks, (height, width))
|
22 |
+
|
23 |
+
label_per_pixel = torch.argmax(
|
24 |
+
masks.squeeze(), dim=0).detach().numpy()
|
25 |
+
color_mask = np.zeros(label_per_pixel.shape + (3,))
|
26 |
+
palette = itertools.cycle(sns.color_palette())
|
27 |
+
|
28 |
+
for lbl in np.unique(label_per_pixel):
|
29 |
+
color_mask[label_per_pixel == lbl, :] = np.asarray(next(palette)) * 255
|
30 |
+
|
31 |
+
return color_mask
|
32 |
+
|
33 |
+
|
34 |
+
def segment(image: Image, model, feature_extractor) -> torch.Tensor:
|
35 |
+
inputs = feature_extractor(
|
36 |
+
images=image, return_tensors="pt")
|
37 |
+
outputs = model(**inputs)
|
38 |
+
masks = outputs.logits
|
39 |
+
|
40 |
+
color_mask = postprocess(masks, image.height, image.width)
|
41 |
+
pred_img = np.array(image.convert('RGB')) * 0.25 + color_mask * 0.75
|
42 |
+
pred_img = pred_img.astype(np.uint8)
|
43 |
+
|
44 |
+
return pred_img
|
streamlit_config.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import re
|
4 |
+
from io import BytesIO
|
5 |
+
|
6 |
+
import segmentation
|
7 |
+
|
8 |
+
|
9 |
+
def init():
|
10 |
+
st.set_page_config(page_title="Semantic image segmentation")
|
11 |
+
st.session_state["model"] = segmentation.create_model()
|
12 |
+
st.session_state["feature_extractor"] = segmentation.create_feature_extractor()
|
13 |
+
|
14 |
+
|
15 |
+
@st.experimental_memo(show_spinner=False)
|
16 |
+
def process_file(file):
|
17 |
+
return segmentation.segment(
|
18 |
+
Image.open(file),
|
19 |
+
st.session_state["model"],
|
20 |
+
st.session_state["feature_extractor"]
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
def get_uploaded_file():
|
25 |
+
return st.file_uploader(
|
26 |
+
label="Choose a file",
|
27 |
+
type=["png", "jpg", "jpeg"],
|
28 |
+
)
|
29 |
+
|
30 |
+
|
31 |
+
def download_button(file, name, format):
|
32 |
+
st.download_button(
|
33 |
+
label="Download processed image",
|
34 |
+
data=file,
|
35 |
+
file_name=name,
|
36 |
+
mime="image/" + format
|
37 |
+
)
|
38 |
+
|
39 |
+
|
40 |
+
def run():
|
41 |
+
st.title("Semantic image segmentation")
|
42 |
+
st.subheader("Upload your image and get an image with segmentation")
|
43 |
+
|
44 |
+
file = get_uploaded_file()
|
45 |
+
if not file:
|
46 |
+
return
|
47 |
+
|
48 |
+
placeholder = st.empty()
|
49 |
+
placeholder.info(
|
50 |
+
"Processing..."
|
51 |
+
)
|
52 |
+
|
53 |
+
image = process_file(file)
|
54 |
+
placeholder.empty()
|
55 |
+
placeholder.image(image)
|
56 |
+
|
57 |
+
filename = file.name
|
58 |
+
format = re.findall("\..*$", filename)[0][1:]
|
59 |
+
|
60 |
+
image = Image.fromarray(image)
|
61 |
+
|
62 |
+
buf = BytesIO()
|
63 |
+
image.save(buf, format="JPEG")
|
64 |
+
byte_image = buf.getvalue()
|
65 |
+
|
66 |
+
download_button(byte_image, filename, format)
|