Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
# Load model and tokenizer once
|
| 6 |
+
model_name = "zekun-li/geolm-base-toponym-recognition"
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
+
model = AutoModelForTokenClassification.from_pretrained(model_name)
|
| 9 |
+
model.to("cpu") # Use "cuda" if you have GPU
|
| 10 |
+
model.eval()
|
| 11 |
+
|
| 12 |
+
# Extract token spans labeled as toponyms
|
| 13 |
+
def get_toponym_entities(text):
|
| 14 |
+
inputs = tokenizer(
|
| 15 |
+
text,
|
| 16 |
+
return_offsets_mapping=True,
|
| 17 |
+
return_tensors="pt",
|
| 18 |
+
truncation=True,
|
| 19 |
+
max_length=512,
|
| 20 |
+
)
|
| 21 |
+
offset_mapping = inputs.pop("offset_mapping")[0]
|
| 22 |
+
input_ids = inputs["input_ids"]
|
| 23 |
+
|
| 24 |
+
with torch.no_grad():
|
| 25 |
+
outputs = model(**inputs)
|
| 26 |
+
predictions = torch.argmax(outputs.logits, dim=2)[0]
|
| 27 |
+
|
| 28 |
+
entities = []
|
| 29 |
+
for idx, label_id in enumerate(predictions):
|
| 30 |
+
if label_id != 0 and idx < len(offset_mapping):
|
| 31 |
+
start, end = offset_mapping[idx].tolist()
|
| 32 |
+
if end > start:
|
| 33 |
+
entities.append((start, end, "Toponym"))
|
| 34 |
+
|
| 35 |
+
return {"text": text, "entities": entities}
|
| 36 |
+
|
| 37 |
+
# Launch Gradio app
|
| 38 |
+
demo = gr.Interface(
|
| 39 |
+
fn=get_toponym_entities,
|
| 40 |
+
inputs=gr.Textbox(lines=10, placeholder="Enter text with place names..."),
|
| 41 |
+
outputs=gr.HighlightedText(),
|
| 42 |
+
title="🌍 Toponym Recognition with GeoLM",
|
| 43 |
+
description="Enter a paragraph and detect highlighted place names using the zekun-li/geolm-base-toponym-recognition model.",
|
| 44 |
+
examples=[
|
| 45 |
+
["Minneapolis, officially the City of Minneapolis, is a city in Minnesota."],
|
| 46 |
+
["Los Angeles is the most populous city in California."],
|
| 47 |
+
],
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
if __name__ == "__main__":
|
| 51 |
+
demo.launch()
|