Spaces:
Sleeping
Sleeping
File size: 4,250 Bytes
971be17 2545b8c e40c511 080429a e40c511 749745d e40c511 0443d1a e40c511 0443d1a e40c511 91cb416 fd60bd4 3c3d474 7cb4a86 91cb416 7cb4a86 e40c511 e62892f 91cb416 e62892f 91cb416 e62892f 91cb416 e62892f 91cb416 e62892f 65beda1 ed16863 65beda1 971be17 b39562c 7f2ed69 b39562c 971be17 65beda1 e62892f 91cb416 e40c511 65beda1 e40c511 971be17 e40c511 ad108ae e40c511 971be17 e40c511 7cb4a86 971be17 7cb4a86 e62892f e40c511 4798672 d56ec3c 4798672 e40c511 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
# Reference: https://huggingface.co/spaces/haotiz/glip-zeroshot-demo/blob/main/app.py
import requests
import os
from io import BytesIO
from PIL import Image
import numpy as np
from pathlib import Path
import gradio as gr
import warnings
warnings.filterwarnings("ignore")
os.system("python setup.py build develop --user")
from maskrcnn_benchmark.config import cfg
from maskrcnn_benchmark.engine.predictor_glip import GLIPDemo
config_file = "configs/pretrain_new/desco_glip.yaml"
weight_file = "MODEL/desco_glip_tiny.pth"
# update the config options with the config file
# manual override some options
cfg.local_rank = 0
cfg.num_gpus = 1
cfg.merge_from_file(config_file)
cfg.merge_from_list(["MODEL.WEIGHT", weight_file])
cfg.merge_from_list(["MODEL.DEVICE", "cuda"])
glip_demo = GLIPDemo(
cfg,
min_image_size=800,
confidence_threshold=0.7,
show_mask_heatmaps=False
)
config_file = "configs/pretrain_new/desco_glip.yaml"
weight_file = "MODEL/local1.pth"
from copy import deepcopy
cfg = deepcopy(cfg)
cfg.merge_from_file(config_file)
cfg.merge_from_list(["MODEL.WEIGHT", weight_file])
cfg.merge_from_list(["MODEL.DEVICE", "cuda"])
local_demo1 = GLIPDemo(
cfg,
min_image_size=800,
confidence_threshold=0.7,
show_mask_heatmaps=False
)
config_file = "configs/pretrain_new/desco_glip.yaml"
weight_file = "MODEL/local2.pth"
from copy import deepcopy
cfg = deepcopy(cfg)
cfg.merge_from_file(config_file)
cfg.merge_from_list(["MODEL.WEIGHT", weight_file])
cfg.merge_from_list(["MODEL.DEVICE", "cuda"])
local_demo2 = GLIPDemo(
cfg,
min_image_size=800,
confidence_threshold=0.7,
show_mask_heatmaps=False
)
config_file = "configs/pretrain_new/desco_fiber.yaml"
weight_file = "MODEL/desco_fiber_base.pth"
from copy import deepcopy
cfg = deepcopy(cfg)
cfg.merge_from_file(config_file)
cfg.merge_from_list(["MODEL.WEIGHT", weight_file])
cfg.merge_from_list(["MODEL.DEVICE", "cuda"])
fiber_demo = GLIPDemo(
cfg,
min_image_size=800,
confidence_threshold=0.7,
show_mask_heatmaps=False
)
athetics_params = {
"skip_name": False, # whether we overlay the phrase over the box
"override_color": (0, 90, 190),
"text_size": 1.0,
"text_pixel": 3,
"box_alpha": 1.0,
"box_pixel": 5,
"text_offset_original": 8, # distance between text and box
}
def predict(image, text, ground_tokens=""):
img_len = min(image.shape[:2])
import math
athetics_params["text_size"] = math.ceil(img_len/1000)
athetics_params["text_pixel"] = math.ceil(img_len/1000*3)
ground_tokens = None if ground_tokens.strip() == "" else ground_tokens.strip().split(";")
result, _ = glip_demo.run_on_web_image(deepcopy(image[:, :, [2, 1, 0]]), text, 0.5, ground_tokens, **athetics_params)
fiber_result, _ = fiber_demo.run_on_web_image(deepcopy(image[:, :, [2, 1, 0]]), text, 0.5, ground_tokens, **athetics_params)
local_result1, _ = local_demo1.run_on_web_image(deepcopy(image[:, :, [2, 1, 0]]), text, 0.5, ground_tokens, **athetics_params)
local_result2, _ = local_demo2.run_on_web_image(deepcopy(image[:, :, [2, 1, 0]]), text, 0.5, ground_tokens, **athetics_params)
return result[:, :, [2, 1, 0]], fiber_result[:, :, [2, 1, 0]], local_result1[:, :, [2, 1, 0]], local_result2[:, :, [2, 1, 0]]
image = gr.inputs.Image()
gr.Interface(
description="Object Recognition with DesCo (https://github.com/liunian-harold-li/DesCo)",
fn=predict,
inputs=["image", "text", "text"],
outputs=[
gr.outputs.Image(
type="pil",
label="DesCo-GLIP"
),
gr.outputs.Image(
type="pil",
label="DesCo-FIBER"
),
gr.outputs.Image(
type="pil",
label="local1"
),
gr.outputs.Image(
type="pil",
label="local2"
),
],
examples=[
["./1.jpg", "A clown making a balloon animal for a pretty lady.", "clown"],
["./1.jpg", "A clown kicking a soccer ball for a pretty lady.", "clown"],
["./2.jpg", "A kind of tool, wooden handle with a round head.", "tool"],
["./3.jpg", "Bumblebee, yellow with black accents.", "Bumblebee"],
],
article=Path("docs/intro.md").read_text()
).launch()
|