chore: version 4
Browse files
app.py
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
import subprocess
|
| 2 |
import time
|
| 3 |
-
from
|
| 4 |
-
from typing import Dict, List, Tuple, Union
|
| 5 |
|
| 6 |
import gradio as gr
|
| 7 |
import numpy as np
|
|
@@ -28,15 +27,59 @@ from concrete.ml.deployment import FHEModelClient
|
|
| 28 |
subprocess.Popen(["uvicorn", "server:app"], cwd=CURRENT_DIR)
|
| 29 |
time.sleep(3)
|
| 30 |
|
| 31 |
-
# pylint: disable=c-extension-no-member
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
return inputs is None or (inputs is not None and len(inputs) < 1)
|
| 34 |
|
| 35 |
|
| 36 |
-
def
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
for pretty_symptom in checkbox_symptoms:
|
| 41 |
original_symptom = "_".join((pretty_symptom.lower().split(" ")))
|
| 42 |
if original_symptom not in symptoms_vector.keys():
|
|
@@ -53,20 +96,16 @@ def get_user_symptoms_from_checkboxgroup(checkbox_symptoms) -> np.array:
|
|
| 53 |
return user_symptoms_vect
|
| 54 |
|
| 55 |
|
| 56 |
-
def
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
df_filtred = df[df[TARGET_COLUMNS[1]] == default_disease]
|
| 60 |
-
symptoms = pretty_print(df_filtred.columns[df_filtred.eq(1).any()].to_list())
|
| 61 |
-
|
| 62 |
-
if any(lst for lst in checkbox_symptoms if lst):
|
| 63 |
-
for sublist in checkbox_symptoms:
|
| 64 |
-
symptoms.extend(sublist)
|
| 65 |
-
|
| 66 |
-
return {box: symptoms for box in check_boxes}
|
| 67 |
|
|
|
|
|
|
|
| 68 |
|
| 69 |
-
|
|
|
|
|
|
|
| 70 |
if not any(lst for lst in checked_symptoms if lst):
|
| 71 |
return {
|
| 72 |
error_box1: gr.update(
|
|
@@ -118,7 +157,7 @@ def key_gen_fn(user_symptoms: List[str]) -> Dict:
|
|
| 118 |
with evaluation_key_path.open("wb") as f:
|
| 119 |
f.write(serialized_evaluation_keys)
|
| 120 |
|
| 121 |
-
serialized_evaluation_keys_shorten_hex = serialized_evaluation_keys.hex()[:INPUT_BROWSER_LIMIT]
|
| 122 |
|
| 123 |
return {
|
| 124 |
error_box2: gr.update(visible=False),
|
|
@@ -128,7 +167,14 @@ def key_gen_fn(user_symptoms: List[str]) -> Dict:
|
|
| 128 |
}
|
| 129 |
|
| 130 |
|
| 131 |
-
def encrypt_fn(user_symptoms, user_id):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
if is_nan(user_id) or is_nan(user_symptoms):
|
| 134 |
print("Error in encryption step: Provide your symptoms and generate the evaluation keys.")
|
|
@@ -164,7 +210,7 @@ def encrypt_fn(user_symptoms, user_id):
|
|
| 164 |
}
|
| 165 |
|
| 166 |
|
| 167 |
-
def send_input_fn(user_id, user_symptoms):
|
| 168 |
"""Send the encrypted data and the evaluation key to the server.
|
| 169 |
|
| 170 |
Args:
|
|
@@ -215,7 +261,7 @@ def send_input_fn(user_id, user_symptoms):
|
|
| 215 |
("files", open(evaluation_key_path, "rb")),
|
| 216 |
]
|
| 217 |
|
| 218 |
-
# Send the encrypted input
|
| 219 |
url = SERVER_URL + "send_input"
|
| 220 |
with requests.post(
|
| 221 |
url=url,
|
|
@@ -226,12 +272,11 @@ def send_input_fn(user_id, user_symptoms):
|
|
| 226 |
return {error_box4: gr.update(visible=False), srv_resp_send_data_box: "Data sent"}
|
| 227 |
|
| 228 |
|
| 229 |
-
def run_fhe_fn(user_id):
|
| 230 |
-
"""Send the encrypted input
|
| 231 |
|
| 232 |
Args:
|
| 233 |
user_id (int): The current user's ID.
|
| 234 |
-
filter_name (str): The current filter to consider.
|
| 235 |
"""
|
| 236 |
if is_nan(user_id): # or is_nan(user_symptoms):
|
| 237 |
return {
|
|
@@ -246,7 +291,7 @@ def run_fhe_fn(user_id):
|
|
| 246 |
"user_id": user_id,
|
| 247 |
}
|
| 248 |
|
| 249 |
-
# Trigger the FHE execution on the encrypted
|
| 250 |
|
| 251 |
url = SERVER_URL + "run_fhe"
|
| 252 |
|
|
@@ -268,7 +313,14 @@ def run_fhe_fn(user_id):
|
|
| 268 |
}
|
| 269 |
|
| 270 |
|
| 271 |
-
def get_output_fn(user_id, user_symptoms):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
if is_nan(user_id) or is_nan(user_symptoms):
|
| 273 |
return {
|
| 274 |
error_box6: gr.update(
|
|
@@ -278,11 +330,13 @@ def get_output_fn(user_id, user_symptoms):
|
|
| 278 |
)
|
| 279 |
}
|
| 280 |
|
|
|
|
|
|
|
| 281 |
data = {
|
| 282 |
"user_id": user_id,
|
| 283 |
}
|
| 284 |
|
| 285 |
-
# Retrieve the encrypted output
|
| 286 |
url = SERVER_URL + "get_output"
|
| 287 |
with requests.post(
|
| 288 |
url=url,
|
|
@@ -302,7 +356,17 @@ def get_output_fn(user_id, user_symptoms):
|
|
| 302 |
return {error_box6: gr.update(visible=False), srv_resp_retrieve_data_box: "Data received"}
|
| 303 |
|
| 304 |
|
| 305 |
-
def decrypt_fn(user_id, user_symptoms):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
if is_nan(user_id) or is_nan(user_symptoms):
|
| 307 |
return {
|
| 308 |
error_box7: gr.update(
|
|
@@ -343,13 +407,14 @@ def decrypt_fn(user_id, user_symptoms):
|
|
| 343 |
}
|
| 344 |
|
| 345 |
|
|
|
|
| 346 |
def clear_all_btn():
|
| 347 |
"""Clear all the box outputs."""
|
| 348 |
|
| 349 |
clean_directory()
|
| 350 |
|
| 351 |
return {
|
| 352 |
-
disease_box: None,
|
| 353 |
user_id_box: None,
|
| 354 |
user_vect_box1: None,
|
| 355 |
user_vect_box2: None,
|
|
@@ -382,10 +447,12 @@ CSS = """
|
|
| 382 |
"""
|
| 383 |
|
| 384 |
if __name__ == "__main__":
|
|
|
|
| 385 |
print("Starting demo ...")
|
|
|
|
| 386 |
clean_directory()
|
| 387 |
|
| 388 |
-
(
|
| 389 |
|
| 390 |
valid_columns = X_train.columns.to_list()
|
| 391 |
|
|
@@ -411,7 +478,7 @@ if __name__ == "__main__":
|
|
| 411 |
</p>
|
| 412 |
|
| 413 |
<p align="center">
|
| 414 |
-
<img width="100%" height="30%" src="https://raw.githubusercontent.com/kcelia/Img/main/
|
| 415 |
</p>
|
| 416 |
"""
|
| 417 |
)
|
|
@@ -430,8 +497,8 @@ if __name__ == "__main__":
|
|
| 430 |
check_boxes = []
|
| 431 |
for i, category in enumerate(SYMPTOMS_LIST):
|
| 432 |
with gr.Accordion(
|
| 433 |
-
pretty_print(category.keys()), open=
|
| 434 |
-
):
|
| 435 |
check_box = gr.CheckboxGroup(
|
| 436 |
pretty_print(category.values()),
|
| 437 |
label=pretty_print(category.keys()),
|
|
@@ -442,31 +509,30 @@ if __name__ == "__main__":
|
|
| 442 |
error_box1 = gr.Textbox(label="Error", visible=False)
|
| 443 |
|
| 444 |
# Default disease, picked from the dataframe
|
| 445 |
-
disease_box = gr.Dropdown(list(sorted(set(df_test["prognosis"]))),
|
| 446 |
-
|
| 447 |
-
disease_box.change(
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
)
|
| 452 |
|
| 453 |
# User symptom vector
|
| 454 |
-
|
| 455 |
-
user_vect_box1 = gr.Textbox(label="User Symptoms Vector:", interactive=False)
|
| 456 |
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
submit_button = gr.Button("Submit")
|
| 460 |
|
| 461 |
with gr.Row():
|
| 462 |
# Clear botton
|
| 463 |
clear_button = gr.Button("Reset")
|
| 464 |
|
| 465 |
submit_button.click(
|
| 466 |
-
fn=
|
| 467 |
inputs=[*check_boxes],
|
| 468 |
outputs=[user_vect_box1, error_box1],
|
| 469 |
)
|
|
|
|
| 470 |
with gr.TabItem("2. Data Encryption") as encryption_tab:
|
| 471 |
gr.Markdown("<span style='color:orange'>Client Side</span>")
|
| 472 |
gr.Markdown("## Step 2: Generate the keys")
|
|
@@ -482,14 +548,13 @@ if __name__ == "__main__":
|
|
| 482 |
with gr.Column(scale=1, min_width=600):
|
| 483 |
key_len_box = gr.Textbox(label="Evaluation Key Size:", interactive=False)
|
| 484 |
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
)
|
| 493 |
|
| 494 |
gen_key_btn.click(
|
| 495 |
key_gen_fn,
|
|
@@ -553,7 +618,7 @@ if __name__ == "__main__":
|
|
| 553 |
outputs=[error_box4, srv_resp_send_data_box],
|
| 554 |
)
|
| 555 |
|
| 556 |
-
with gr.TabItem("3.
|
| 557 |
gr.Markdown("<span style='color:orange'>Client Side</span>")
|
| 558 |
gr.Markdown("## Step 5: Run the FHE evaluation")
|
| 559 |
|
|
@@ -569,8 +634,12 @@ if __name__ == "__main__":
|
|
| 569 |
outputs=[fhe_execution_time_box, error_box5],
|
| 570 |
)
|
| 571 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 572 |
gr.Markdown(
|
| 573 |
-
"## Step 6: Get the data from the <span style='color:orange'>Server</span>"
|
| 574 |
)
|
| 575 |
|
| 576 |
error_box6 = gr.Textbox(label="Error", visible=False)
|
|
@@ -589,8 +658,7 @@ if __name__ == "__main__":
|
|
| 589 |
outputs=[srv_resp_retrieve_data_box, error_box6],
|
| 590 |
)
|
| 591 |
|
| 592 |
-
|
| 593 |
-
gr.Markdown("<span style='color:orange'>Client Side</span>")
|
| 594 |
gr.Markdown("## Step 7: Decrypt the output")
|
| 595 |
|
| 596 |
decrypt_target_btn = gr.Button("Decrypt the output")
|
|
@@ -608,7 +676,7 @@ if __name__ == "__main__":
|
|
| 608 |
outputs=[
|
| 609 |
user_vect_box1,
|
| 610 |
user_vect_box2,
|
| 611 |
-
disease_box,
|
| 612 |
error_box1,
|
| 613 |
error_box2,
|
| 614 |
error_box3,
|
|
|
|
| 1 |
import subprocess
|
| 2 |
import time
|
| 3 |
+
from typing import Dict, List, Tuple
|
|
|
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
import numpy as np
|
|
|
|
| 27 |
subprocess.Popen(["uvicorn", "server:app"], cwd=CURRENT_DIR)
|
| 28 |
time.sleep(3)
|
| 29 |
|
| 30 |
+
# pylint: disable=c-extension-no-member,invalid-name
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def is_nan(inputs) -> bool:
|
| 34 |
+
"""
|
| 35 |
+
Check if the input is NaN.
|
| 36 |
+
|
| 37 |
+
Args:
|
| 38 |
+
inputs (any): The input to be checked.
|
| 39 |
+
|
| 40 |
+
Returns:
|
| 41 |
+
bool: True if the input is NaN or empty, False otherwise.
|
| 42 |
+
"""
|
| 43 |
return inputs is None or (inputs is not None and len(inputs) < 1)
|
| 44 |
|
| 45 |
|
| 46 |
+
# def fill_in_fn(default_disease: str, *checkbox_symptoms: Tuple[str]) -> Dict:
|
| 47 |
+
# """
|
| 48 |
+
# Fill in the gr.CheckBoxGroup list with the predefined symptoms of a selected default disease.
|
| 49 |
|
| 50 |
+
# Args:
|
| 51 |
+
# default_disease (str): The default disease
|
| 52 |
+
# *checkbox_symptoms (Tuple[str]): Tuple of selected symptoms
|
| 53 |
+
|
| 54 |
+
# Returns:
|
| 55 |
+
# dict: The updated gr.CheckBoxesGroup.
|
| 56 |
+
# """
|
| 57 |
+
# df = pd.read_csv(TRAINING_FILENAME)
|
| 58 |
+
# df_filtred = df[df[TARGET_COLUMNS[1]] == default_disease]
|
| 59 |
+
# symptoms = pretty_print(df_filtred.columns[df_filtred.eq(1).any()].to_list())
|
| 60 |
+
|
| 61 |
+
# if any(lst for lst in checkbox_symptoms if lst):
|
| 62 |
+
# for sublist in checkbox_symptoms:
|
| 63 |
+
# symptoms.extend(sublist)
|
| 64 |
+
|
| 65 |
+
# return {box: symptoms for box in check_boxes}
|
| 66 |
|
| 67 |
+
|
| 68 |
+
def get_user_symptoms_from_checkboxgroup(checkbox_symptoms: List) -> np.array:
|
| 69 |
+
"""
|
| 70 |
+
Convert the user symptoms into a binary vector representation.
|
| 71 |
+
|
| 72 |
+
Args:
|
| 73 |
+
checkbox_symptoms (list): A list of user symptoms.
|
| 74 |
+
|
| 75 |
+
Returns:
|
| 76 |
+
np.array: A binary vector representing the user's symptoms.
|
| 77 |
+
|
| 78 |
+
Raises:
|
| 79 |
+
KeyError: If a provided symptom is not recognized as a valid symptom.
|
| 80 |
+
|
| 81 |
+
"""
|
| 82 |
+
symptoms_vector = {key: 0 for key in valid_columns}
|
| 83 |
for pretty_symptom in checkbox_symptoms:
|
| 84 |
original_symptom = "_".join((pretty_symptom.lower().split(" ")))
|
| 85 |
if original_symptom not in symptoms_vector.keys():
|
|
|
|
| 96 |
return user_symptoms_vect
|
| 97 |
|
| 98 |
|
| 99 |
+
def get_features_fn(*checked_symptoms: Tuple[str]) -> Dict:
|
| 100 |
+
"""
|
| 101 |
+
Get vector features based on the selected symptoms.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
+
Args:
|
| 104 |
+
checked_symptoms (Tuple[str]): User symptoms
|
| 105 |
|
| 106 |
+
Returns:
|
| 107 |
+
Dict: The encoded user vector symptoms.
|
| 108 |
+
"""
|
| 109 |
if not any(lst for lst in checked_symptoms if lst):
|
| 110 |
return {
|
| 111 |
error_box1: gr.update(
|
|
|
|
| 157 |
with evaluation_key_path.open("wb") as f:
|
| 158 |
f.write(serialized_evaluation_keys)
|
| 159 |
|
| 160 |
+
serialized_evaluation_keys_shorten_hex = serialized_evaluation_keys.hex()[:INPUT_BROWSER_LIMIT]
|
| 161 |
|
| 162 |
return {
|
| 163 |
error_box2: gr.update(visible=False),
|
|
|
|
| 167 |
}
|
| 168 |
|
| 169 |
|
| 170 |
+
def encrypt_fn(user_symptoms: np.ndarray, user_id: str) -> None:
|
| 171 |
+
"""
|
| 172 |
+
Encrypt the user symptoms vector in the `Client Side`.
|
| 173 |
+
|
| 174 |
+
Args:
|
| 175 |
+
user_symptoms (List[str]): The vector symptoms provided by the user
|
| 176 |
+
user_id (user): The current user's ID
|
| 177 |
+
"""
|
| 178 |
|
| 179 |
if is_nan(user_id) or is_nan(user_symptoms):
|
| 180 |
print("Error in encryption step: Provide your symptoms and generate the evaluation keys.")
|
|
|
|
| 210 |
}
|
| 211 |
|
| 212 |
|
| 213 |
+
def send_input_fn(user_id: str, user_symptoms: np.ndarray) -> Dict:
|
| 214 |
"""Send the encrypted data and the evaluation key to the server.
|
| 215 |
|
| 216 |
Args:
|
|
|
|
| 261 |
("files", open(evaluation_key_path, "rb")),
|
| 262 |
]
|
| 263 |
|
| 264 |
+
# Send the encrypted input and evaluation key to the server
|
| 265 |
url = SERVER_URL + "send_input"
|
| 266 |
with requests.post(
|
| 267 |
url=url,
|
|
|
|
| 272 |
return {error_box4: gr.update(visible=False), srv_resp_send_data_box: "Data sent"}
|
| 273 |
|
| 274 |
|
| 275 |
+
def run_fhe_fn(user_id: str) -> Dict:
|
| 276 |
+
"""Send the encrypted input as well as the evaluation key to the server.
|
| 277 |
|
| 278 |
Args:
|
| 279 |
user_id (int): The current user's ID.
|
|
|
|
| 280 |
"""
|
| 281 |
if is_nan(user_id): # or is_nan(user_symptoms):
|
| 282 |
return {
|
|
|
|
| 291 |
"user_id": user_id,
|
| 292 |
}
|
| 293 |
|
| 294 |
+
# Trigger the FHE execution on the encrypted previously sent
|
| 295 |
|
| 296 |
url = SERVER_URL + "run_fhe"
|
| 297 |
|
|
|
|
| 313 |
}
|
| 314 |
|
| 315 |
|
| 316 |
+
def get_output_fn(user_id: str, user_symptoms: np.ndarray) -> Dict:
|
| 317 |
+
"""Retreive the encrypted data from the server.
|
| 318 |
+
|
| 319 |
+
Args:
|
| 320 |
+
user_id (int): The current user's ID
|
| 321 |
+
user_symptoms (numpy.ndarray): The user symptoms
|
| 322 |
+
"""
|
| 323 |
+
|
| 324 |
if is_nan(user_id) or is_nan(user_symptoms):
|
| 325 |
return {
|
| 326 |
error_box6: gr.update(
|
|
|
|
| 330 |
)
|
| 331 |
}
|
| 332 |
|
| 333 |
+
|
| 334 |
+
|
| 335 |
data = {
|
| 336 |
"user_id": user_id,
|
| 337 |
}
|
| 338 |
|
| 339 |
+
# Retrieve the encrypted output
|
| 340 |
url = SERVER_URL + "get_output"
|
| 341 |
with requests.post(
|
| 342 |
url=url,
|
|
|
|
| 356 |
return {error_box6: gr.update(visible=False), srv_resp_retrieve_data_box: "Data received"}
|
| 357 |
|
| 358 |
|
| 359 |
+
def decrypt_fn(user_id: str, user_symptoms: np.ndarray) -> Dict:
|
| 360 |
+
"""Dencrypt the data on the `Client Side`.
|
| 361 |
+
|
| 362 |
+
Args:
|
| 363 |
+
user_id (int): The current user's ID
|
| 364 |
+
user_symptoms (numpy.ndarray): The user symptoms
|
| 365 |
+
|
| 366 |
+
Returns:
|
| 367 |
+
Decrypted output
|
| 368 |
+
"""
|
| 369 |
+
|
| 370 |
if is_nan(user_id) or is_nan(user_symptoms):
|
| 371 |
return {
|
| 372 |
error_box7: gr.update(
|
|
|
|
| 407 |
}
|
| 408 |
|
| 409 |
|
| 410 |
+
|
| 411 |
def clear_all_btn():
|
| 412 |
"""Clear all the box outputs."""
|
| 413 |
|
| 414 |
clean_directory()
|
| 415 |
|
| 416 |
return {
|
| 417 |
+
# disease_box: None,
|
| 418 |
user_id_box: None,
|
| 419 |
user_vect_box1: None,
|
| 420 |
user_vect_box2: None,
|
|
|
|
| 447 |
"""
|
| 448 |
|
| 449 |
if __name__ == "__main__":
|
| 450 |
+
|
| 451 |
print("Starting demo ...")
|
| 452 |
+
|
| 453 |
clean_directory()
|
| 454 |
|
| 455 |
+
(X_train, X_test), (y_train, y_test) = load_data()
|
| 456 |
|
| 457 |
valid_columns = X_train.columns.to_list()
|
| 458 |
|
|
|
|
| 478 |
</p>
|
| 479 |
|
| 480 |
<p align="center">
|
| 481 |
+
<img width="100%" height="30%" src="https://raw.githubusercontent.com/kcelia/Img/main/health_prediction_img.png">
|
| 482 |
</p>
|
| 483 |
"""
|
| 484 |
)
|
|
|
|
| 497 |
check_boxes = []
|
| 498 |
for i, category in enumerate(SYMPTOMS_LIST):
|
| 499 |
with gr.Accordion(
|
| 500 |
+
pretty_print(category.keys()), open=False, elem_classes="feedback"
|
| 501 |
+
) as accordion:
|
| 502 |
check_box = gr.CheckboxGroup(
|
| 503 |
pretty_print(category.values()),
|
| 504 |
label=pretty_print(category.keys()),
|
|
|
|
| 509 |
error_box1 = gr.Textbox(label="Error", visible=False)
|
| 510 |
|
| 511 |
# Default disease, picked from the dataframe
|
| 512 |
+
# disease_box = gr.Dropdown(list(sorted(set(df_test["prognosis"]))),
|
| 513 |
+
# label="Disease:")
|
| 514 |
+
# disease_box.change(
|
| 515 |
+
# fn=fill_in_fn,
|
| 516 |
+
# inputs=[disease_box, *check_boxes],
|
| 517 |
+
# outputs=[*check_boxes],
|
| 518 |
+
# )
|
| 519 |
|
| 520 |
# User symptom vector
|
| 521 |
+
user_vect_box1 = gr.Textbox(label="User Symptoms Vector:", interactive=False)
|
|
|
|
| 522 |
|
| 523 |
+
# Submit botton
|
| 524 |
+
submit_button = gr.Button("Submit")
|
|
|
|
| 525 |
|
| 526 |
with gr.Row():
|
| 527 |
# Clear botton
|
| 528 |
clear_button = gr.Button("Reset")
|
| 529 |
|
| 530 |
submit_button.click(
|
| 531 |
+
fn=get_features_fn,
|
| 532 |
inputs=[*check_boxes],
|
| 533 |
outputs=[user_vect_box1, error_box1],
|
| 534 |
)
|
| 535 |
+
|
| 536 |
with gr.TabItem("2. Data Encryption") as encryption_tab:
|
| 537 |
gr.Markdown("<span style='color:orange'>Client Side</span>")
|
| 538 |
gr.Markdown("## Step 2: Generate the keys")
|
|
|
|
| 548 |
with gr.Column(scale=1, min_width=600):
|
| 549 |
key_len_box = gr.Textbox(label="Evaluation Key Size:", interactive=False)
|
| 550 |
|
| 551 |
+
# Evaluation key (truncated)
|
| 552 |
+
with gr.Column(scale=2, min_width=600):
|
| 553 |
+
key_box = gr.Textbox(
|
| 554 |
+
label="Evaluation key (truncated):",
|
| 555 |
+
max_lines=3,
|
| 556 |
+
interactive=False,
|
| 557 |
+
)
|
|
|
|
| 558 |
|
| 559 |
gen_key_btn.click(
|
| 560 |
key_gen_fn,
|
|
|
|
| 618 |
outputs=[error_box4, srv_resp_send_data_box],
|
| 619 |
)
|
| 620 |
|
| 621 |
+
with gr.TabItem("3. FHE execution") as fhe_tab:
|
| 622 |
gr.Markdown("<span style='color:orange'>Client Side</span>")
|
| 623 |
gr.Markdown("## Step 5: Run the FHE evaluation")
|
| 624 |
|
|
|
|
| 634 |
outputs=[fhe_execution_time_box, error_box5],
|
| 635 |
)
|
| 636 |
|
| 637 |
+
with gr.TabItem("4. Data Decryption") as decryption_tab:
|
| 638 |
+
|
| 639 |
+
gr.Markdown("<span style='color:orange'>Client Side</span>")
|
| 640 |
+
|
| 641 |
gr.Markdown(
|
| 642 |
+
"## Step 6: Get the data from the <span style='color:orange'>Server Side</span>"
|
| 643 |
)
|
| 644 |
|
| 645 |
error_box6 = gr.Textbox(label="Error", visible=False)
|
|
|
|
| 658 |
outputs=[srv_resp_retrieve_data_box, error_box6],
|
| 659 |
)
|
| 660 |
|
| 661 |
+
|
|
|
|
| 662 |
gr.Markdown("## Step 7: Decrypt the output")
|
| 663 |
|
| 664 |
decrypt_target_btn = gr.Button("Decrypt the output")
|
|
|
|
| 676 |
outputs=[
|
| 677 |
user_vect_box1,
|
| 678 |
user_vect_box2,
|
| 679 |
+
# disease_box,
|
| 680 |
error_box1,
|
| 681 |
error_box2,
|
| 682 |
error_box3,
|
utils.py
CHANGED
|
@@ -113,7 +113,7 @@ def load_data() -> Tuple[pandas.DataFrame, pandas.DataFrame, numpy.ndarray]:
|
|
| 113 |
y_test = df_test[TARGET_COLUMNS[0]]
|
| 114 |
X_test = df_test.drop(columns=TARGET_COLUMNS, axis=1, errors="ignore")
|
| 115 |
|
| 116 |
-
return (
|
| 117 |
|
| 118 |
|
| 119 |
def load_model(X_train: pandas.DataFrame, y_train: numpy.ndarray):
|
|
|
|
| 113 |
y_test = df_test[TARGET_COLUMNS[0]]
|
| 114 |
X_test = df_test.drop(columns=TARGET_COLUMNS, axis=1, errors="ignore")
|
| 115 |
|
| 116 |
+
return (X_train, X_test), (y_train, y_test)
|
| 117 |
|
| 118 |
|
| 119 |
def load_model(X_train: pandas.DataFrame, y_train: numpy.ndarray):
|