from sklearn.metrics import accuracy_score, f1_score def get_metrics(y_true, y_preds): accuracy = accuracy_score(y_true, y_preds) f1_macro = f1_score(y_true, y_preds, average="macro") f1_weighted = f1_score(y_true, y_preds, average="weighted") print(f"Accuracy: {accuracy}") print(f"F1 macro average: {f1_macro}") print(f"F1 weighted average: {f1_weighted}") def evaluate_predictions(model:str, train_preds, y_train, test_preds, y_test): print(model) print("\nTrain set:") get_metrics(y_train, train_preds) print("-"*50) print("Test set:") get_metrics(y_test, test_preds)