Spaces:
Sleeping
Sleeping
trained logistic regression
Browse files- src/classifier.ipynb +111 -11
src/classifier.ipynb
CHANGED
@@ -10,24 +10,18 @@
|
|
10 |
},
|
11 |
{
|
12 |
"cell_type": "code",
|
13 |
-
"execution_count":
|
14 |
"metadata": {},
|
15 |
-
"outputs": [
|
16 |
-
{
|
17 |
-
"name": "stderr",
|
18 |
-
"output_type": "stream",
|
19 |
-
"text": [
|
20 |
-
"/home/mehdi/miniconda3/envs/adc/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
21 |
-
" from .autonotebook import tqdm as notebook_tqdm\n"
|
22 |
-
]
|
23 |
-
}
|
24 |
-
],
|
25 |
"source": [
|
26 |
"import pickle\n",
|
27 |
"\n",
|
28 |
"from datasets import DatasetDict, Dataset\n",
|
29 |
"import matplotlib.pyplot as plt\n",
|
|
|
30 |
"import pandas as pd\n",
|
|
|
|
|
31 |
"import torch\n",
|
32 |
"from transformers import AutoModel, AutoTokenizer"
|
33 |
]
|
@@ -488,6 +482,13 @@
|
|
488 |
"### 2.2 Feature Extraction"
|
489 |
]
|
490 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
491 |
{
|
492 |
"cell_type": "code",
|
493 |
"execution_count": 13,
|
@@ -538,6 +539,105 @@
|
|
538 |
"### 2.3 Model Training"
|
539 |
]
|
540 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
541 |
{
|
542 |
"cell_type": "markdown",
|
543 |
"metadata": {},
|
|
|
10 |
},
|
11 |
{
|
12 |
"cell_type": "code",
|
13 |
+
"execution_count": 30,
|
14 |
"metadata": {},
|
15 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
"source": [
|
17 |
"import pickle\n",
|
18 |
"\n",
|
19 |
"from datasets import DatasetDict, Dataset\n",
|
20 |
"import matplotlib.pyplot as plt\n",
|
21 |
+
"import numpy as np\n",
|
22 |
"import pandas as pd\n",
|
23 |
+
"from sklearn.ensemble import RandomForestClassifier\n",
|
24 |
+
"from sklearn.linear_model import LogisticRegression\n",
|
25 |
"import torch\n",
|
26 |
"from transformers import AutoModel, AutoTokenizer"
|
27 |
]
|
|
|
482 |
"### 2.2 Feature Extraction"
|
483 |
]
|
484 |
},
|
485 |
+
{
|
486 |
+
"cell_type": "markdown",
|
487 |
+
"metadata": {},
|
488 |
+
"source": [
|
489 |
+
"Now, we will extract the output of the last hidden layer of AraBART, and use those embeddings as the features of our classifier."
|
490 |
+
]
|
491 |
+
},
|
492 |
{
|
493 |
"cell_type": "code",
|
494 |
"execution_count": 13,
|
|
|
539 |
"### 2.3 Model Training"
|
540 |
]
|
541 |
},
|
542 |
+
{
|
543 |
+
"cell_type": "markdown",
|
544 |
+
"metadata": {},
|
545 |
+
"source": [
|
546 |
+
"Now, we only need to convert the data into numpy arrays, and we are ready to train the models."
|
547 |
+
]
|
548 |
+
},
|
549 |
+
{
|
550 |
+
"cell_type": "code",
|
551 |
+
"execution_count": 28,
|
552 |
+
"metadata": {},
|
553 |
+
"outputs": [
|
554 |
+
{
|
555 |
+
"data": {
|
556 |
+
"text/plain": [
|
557 |
+
"((21000, 768), (21000,))"
|
558 |
+
]
|
559 |
+
},
|
560 |
+
"execution_count": 28,
|
561 |
+
"metadata": {},
|
562 |
+
"output_type": "execute_result"
|
563 |
+
}
|
564 |
+
],
|
565 |
+
"source": [
|
566 |
+
"X_train = np.array(data_hidden[\"train\"][\"hidden_state\"])\n",
|
567 |
+
"X_test = np.array(data_hidden[\"test\"][\"hidden_state\"])\n",
|
568 |
+
"y_train = np.array(data_hidden[\"train\"][\"label\"])\n",
|
569 |
+
"y_test = np.array(data_hidden[\"test\"][\"label\"])\n",
|
570 |
+
"\n",
|
571 |
+
"X_train.shape, y_train.shape"
|
572 |
+
]
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"cell_type": "markdown",
|
576 |
+
"metadata": {},
|
577 |
+
"source": [
|
578 |
+
"We can try different models."
|
579 |
+
]
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"cell_type": "markdown",
|
583 |
+
"metadata": {},
|
584 |
+
"source": [
|
585 |
+
"#### 2.3.1 Logistic Regression "
|
586 |
+
]
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"cell_type": "code",
|
590 |
+
"execution_count": 32,
|
591 |
+
"metadata": {},
|
592 |
+
"outputs": [
|
593 |
+
{
|
594 |
+
"data": {
|
595 |
+
"text/html": [
|
596 |
+
"<style>#sk-container-id-2 {color: black;}#sk-container-id-2 pre{padding: 0;}#sk-container-id-2 div.sk-toggleable {background-color: white;}#sk-container-id-2 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-2 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-2 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-2 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-2 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-2 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-2 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-2 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-2 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-2 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-2 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-2 div.sk-item {position: relative;z-index: 1;}#sk-container-id-2 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-2 div.sk-item::before, #sk-container-id-2 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-2 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-2 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-2 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-2 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-2 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-2 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-2 div.sk-label-container {text-align: center;}#sk-container-id-2 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-2 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-2\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>LogisticRegression(class_weight='balanced', max_iter=1000,\n",
|
597 |
+
" multi_class='multinomial', random_state=2024)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-2\" type=\"checkbox\" checked><label for=\"sk-estimator-id-2\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">LogisticRegression</label><div class=\"sk-toggleable__content\"><pre>LogisticRegression(class_weight='balanced', max_iter=1000,\n",
|
598 |
+
" multi_class='multinomial', random_state=2024)</pre></div></div></div></div></div>"
|
599 |
+
],
|
600 |
+
"text/plain": [
|
601 |
+
"LogisticRegression(class_weight='balanced', max_iter=1000,\n",
|
602 |
+
" multi_class='multinomial', random_state=2024)"
|
603 |
+
]
|
604 |
+
},
|
605 |
+
"execution_count": 32,
|
606 |
+
"metadata": {},
|
607 |
+
"output_type": "execute_result"
|
608 |
+
}
|
609 |
+
],
|
610 |
+
"source": [
|
611 |
+
"lr_model = LogisticRegression(multi_class='multinomial', \n",
|
612 |
+
" class_weight=\"balanced\", \n",
|
613 |
+
" max_iter=1000, \n",
|
614 |
+
" random_state=2024)\n",
|
615 |
+
"lr_model.fit(X_train, y_train)"
|
616 |
+
]
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"cell_type": "markdown",
|
620 |
+
"metadata": {},
|
621 |
+
"source": [
|
622 |
+
"#### 2.3.2 Random Forest"
|
623 |
+
]
|
624 |
+
},
|
625 |
+
{
|
626 |
+
"cell_type": "markdown",
|
627 |
+
"metadata": {},
|
628 |
+
"source": [
|
629 |
+
"For the Random forest, we can do a grid search to optimize the hyperparameters. We will use a 5-fold cross validation strategy."
|
630 |
+
]
|
631 |
+
},
|
632 |
+
{
|
633 |
+
"cell_type": "code",
|
634 |
+
"execution_count": null,
|
635 |
+
"metadata": {},
|
636 |
+
"outputs": [],
|
637 |
+
"source": [
|
638 |
+
"rf_model = RandomForestClassifier()\n"
|
639 |
+
]
|
640 |
+
},
|
641 |
{
|
642 |
"cell_type": "markdown",
|
643 |
"metadata": {},
|