Spaces:
Sleeping
Sleeping
File size: 914 Bytes
ec4a7b0 1784a22 c1f16ee 7ecfa8c 9a23b5c 45c84cc 99757c1 ec4a7b0 99757c1 9a23b5c 99757c1 7ecfa8c c1f16ee 7ecfa8c c1f16ee 7ecfa8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import os
import pickle
import gradio as gr
from transformers import AutoModel, AutoTokenizer
from .utils import extract_hidden_state
models_dir = os.path.join(os.path.dirname(__file__), '..', 'models')
model_file = os.path.join(models_dir, 'logistic_regression.pkl')
if os.path.exists(model_file):
with open(model_file, "rb") as f:
model = pickle.load(f)
else:
print(f"Error: {model_file} not found.")
model_name = "moussaKam/AraBART"
tokenizer = AutoTokenizer.from_pretrained(model_name)
language_model = AutoModel.from_pretrained(model_name)
def classify_arabic_dialect(text):
text_embeddings = extract_hidden_state(text, tokenizer, language_model)
predicted_class = model.predict(text_embeddings)[0]
return predicted_class
demo = gr.Interface(
fn=classify_arabic_dialect,
inputs=["text"],
outputs=["text"],
)
if __name__ == "__main__":
demo.launch()
|