Last commit not found
# coding=utf-8 | |
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch OpenAI GPT model.""" | |
from __future__ import absolute_import, division, print_function, unicode_literals | |
import collections | |
import copy | |
import json | |
import logging | |
import math | |
import os | |
import shutil | |
import tarfile | |
import tempfile | |
import sys | |
from io import open | |
import torch | |
import torch.nn as nn | |
from torch.nn import CrossEntropyLoss | |
from torch.nn.parameter import Parameter | |
from .file_utils import cached_path, CONFIG_NAME, WEIGHTS_NAME | |
from .modeling import BertLayerNorm as LayerNorm | |
logger = logging.getLogger(__name__) | |
PRETRAINED_MODEL_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-pytorch_model.bin"} | |
PRETRAINED_CONFIG_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-config.json"} | |
def load_tf_weights_in_openai_gpt(model, openai_checkpoint_folder_path): | |
""" Load tf pre-trained weights in a pytorch model (from NumPy arrays here) | |
""" | |
import re | |
import numpy as np | |
print("Loading weights...") | |
names = json.load(open(openai_checkpoint_folder_path + '/parameters_names.json', "r", encoding='utf-8')) | |
shapes = json.load(open(openai_checkpoint_folder_path + '/params_shapes.json', "r", encoding='utf-8')) | |
offsets = np.cumsum([np.prod(shape) for shape in shapes]) | |
init_params = [np.load(openai_checkpoint_folder_path + '/params_{}.npy'.format(n)) for n in range(10)] | |
init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1] | |
init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)] | |
# This was used when we had a single embedding matrix for positions and tokens | |
# init_params[0] = np.concatenate([init_params[1], init_params[0]], 0) | |
# del init_params[1] | |
init_params = [arr.squeeze() for arr in init_params] | |
try: | |
assert model.tokens_embed.weight.shape == init_params[1].shape | |
assert model.positions_embed.weight.shape == init_params[0].shape | |
except AssertionError as e: | |
e.args += (model.tokens_embed.weight.shape, init_params[1].shape) | |
e.args += (model.positions_embed.weight.shape, init_params[0].shape) | |
raise | |
model.tokens_embed.weight.data = torch.from_numpy(init_params[1]) | |
model.positions_embed.weight.data = torch.from_numpy(init_params[0]) | |
names.pop(0) | |
# Pop position and token embedding arrays | |
init_params.pop(0) | |
init_params.pop(0) | |
for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]): | |
name = name[6:] # skip "model/" | |
assert name[-2:] == ":0" | |
name = name[:-2] | |
name = name.split('/') | |
pointer = model | |
for m_name in name: | |
if re.fullmatch(r'[A-Za-z]+\d+', m_name): | |
l = re.split(r'(\d+)', m_name) | |
else: | |
l = [m_name] | |
if l[0] == 'g': | |
pointer = getattr(pointer, 'weight') | |
elif l[0] == 'b': | |
pointer = getattr(pointer, 'bias') | |
elif l[0] == 'w': | |
pointer = getattr(pointer, 'weight') | |
else: | |
pointer = getattr(pointer, l[0]) | |
if len(l) >= 2: | |
num = int(l[1]) | |
pointer = pointer[num] | |
try: | |
assert pointer.shape == array.shape | |
except AssertionError as e: | |
e.args += (pointer.shape, array.shape) | |
raise | |
try: | |
assert pointer.shape == array.shape | |
except AssertionError as e: | |
e.args += (pointer.shape, array.shape) | |
raise | |
print("Initialize PyTorch weight {}".format(name)) | |
pointer.data = torch.from_numpy(array) | |
return model | |
def gelu(x): | |
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) | |
def swish(x): | |
return x * torch.sigmoid(x) | |
ACT_FNS = {"relu": nn.ReLU, "swish": swish, "gelu": gelu} | |
class OpenAIGPTConfig(object): | |
"""Configuration class to store the configuration of a `OpenAIGPTModel`. | |
""" | |
def __init__( | |
self, | |
vocab_size_or_config_json_file=40478, | |
n_special=0, | |
n_positions=512, | |
n_ctx=512, | |
n_embd=768, | |
n_layer=12, | |
n_head=12, | |
afn="gelu", | |
resid_pdrop=0.1, | |
embd_pdrop=0.1, | |
attn_pdrop=0.1, | |
layer_norm_epsilon=1e-5, | |
initializer_range=0.02, | |
): | |
"""Constructs OpenAIGPTConfig. | |
Args: | |
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `OpenAIGPTModel` or a configuration json file. | |
n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...) | |
n_positions: Number of positional embeddings. | |
n_ctx: Size of the causal mask (usually same as n_positions). | |
n_embd: Dimensionality of the embeddings and hidden states. | |
n_layer: Number of hidden layers in the Transformer encoder. | |
n_head: Number of attention heads for each attention layer in | |
the Transformer encoder. | |
afn: The non-linear activation function (function or string) in the | |
encoder and pooler. If string, "gelu", "relu" and "swish" are supported. | |
resid_pdrop: The dropout probabilitiy for all fully connected | |
layers in the embeddings, encoder, and pooler. | |
attn_pdrop: The dropout ratio for the attention | |
probabilities. | |
embd_pdrop: The dropout ratio for the embeddings. | |
layer_norm_epsilon: epsilon to use in the layer norm layers | |
initializer_range: The sttdev of the truncated_normal_initializer for | |
initializing all weight matrices. | |
""" | |
if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2 | |
and isinstance(vocab_size_or_config_json_file, unicode)): | |
with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader: | |
json_config = json.loads(reader.read()) | |
for key, value in json_config.items(): | |
self.__dict__[key] = value | |
elif isinstance(vocab_size_or_config_json_file, int): | |
self.vocab_size = vocab_size_or_config_json_file | |
self.n_special = n_special | |
self.n_ctx = n_ctx | |
self.n_positions = n_positions | |
self.n_embd = n_embd | |
self.n_layer = n_layer | |
self.n_head = n_head | |
self.afn = afn | |
self.resid_pdrop = resid_pdrop | |
self.embd_pdrop = embd_pdrop | |
self.attn_pdrop = attn_pdrop | |
self.layer_norm_epsilon = layer_norm_epsilon | |
self.initializer_range = initializer_range | |
else: | |
raise ValueError( | |
"First argument must be either a vocabulary size (int)" | |
"or the path to a pretrained model config file (str)" | |
) | |
def total_tokens_embeddings(self): | |
return self.vocab_size + self.n_special | |
def from_dict(cls, json_object): | |
"""Constructs a `OpenAIGPTConfig` from a Python dictionary of parameters.""" | |
config = OpenAIGPTConfig(vocab_size_or_config_json_file=-1) | |
for key, value in json_object.items(): | |
config.__dict__[key] = value | |
return config | |
def from_json_file(cls, json_file): | |
"""Constructs a `OpenAIGPTConfig` from a json file of parameters.""" | |
with open(json_file, "r", encoding="utf-8") as reader: | |
text = reader.read() | |
return cls.from_dict(json.loads(text)) | |
def __repr__(self): | |
return str(self.to_json_string()) | |
def to_dict(self): | |
"""Serializes this instance to a Python dictionary.""" | |
output = copy.deepcopy(self.__dict__) | |
return output | |
def to_json_string(self): | |
"""Serializes this instance to a JSON string.""" | |
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" | |
def to_json_file(self, json_file_path): | |
""" Save this instance to a json file.""" | |
with open(json_file_path, "w", encoding='utf-8') as writer: | |
writer.write(self.to_json_string()) | |
class Conv1D(nn.Module): | |
def __init__(self, nf, rf, nx): | |
super(Conv1D, self).__init__() | |
self.rf = rf | |
self.nf = nf | |
if rf == 1: # faster 1x1 conv | |
w = torch.empty(nx, nf) | |
nn.init.normal_(w, std=0.02) | |
self.weight = Parameter(w) | |
self.bias = Parameter(torch.zeros(nf)) | |
else: # was used to train LM | |
raise NotImplementedError | |
def forward(self, x): | |
if self.rf == 1: | |
size_out = x.size()[:-1] + (self.nf,) | |
x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight) | |
x = x.view(*size_out) | |
else: | |
raise NotImplementedError | |
return x | |
class Attention(nn.Module): | |
def __init__(self, nx, n_ctx, config, scale=False): | |
super(Attention, self).__init__() | |
n_state = nx # in Attention: n_state=768 (nx=n_embd) | |
# [switch nx => n_state from Block to Attention to keep identical to TF implem] | |
assert n_state % config.n_head == 0 | |
self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx)) | |
self.n_head = config.n_head | |
self.split_size = n_state | |
self.scale = scale | |
self.c_attn = Conv1D(n_state * 3, 1, nx) | |
self.c_proj = Conv1D(n_state, 1, nx) | |
self.attn_dropout = nn.Dropout(config.attn_pdrop) | |
self.resid_dropout = nn.Dropout(config.resid_pdrop) | |
def _attn(self, q, k, v): | |
w = torch.matmul(q, k) | |
if self.scale: | |
w = w / math.sqrt(v.size(-1)) | |
# w = w * self.bias + -1e9 * (1 - self.bias) # TF implem method: mask_attn_weights | |
# XD: self.b may be larger than w, so we need to crop it | |
b = self.bias[:, :, : w.size(-2), : w.size(-1)] | |
w = w * b + -1e9 * (1 - b) | |
w = nn.Softmax(dim=-1)(w) | |
w = self.attn_dropout(w) | |
return torch.matmul(w, v) | |
def merge_heads(self, x): | |
x = x.permute(0, 2, 1, 3).contiguous() | |
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),) | |
return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states | |
def split_heads(self, x, k=False): | |
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head) | |
x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states | |
if k: | |
return x.permute(0, 2, 3, 1) | |
else: | |
return x.permute(0, 2, 1, 3) | |
def forward(self, x): | |
x = self.c_attn(x) | |
query, key, value = x.split(self.split_size, dim=2) | |
query = self.split_heads(query) | |
key = self.split_heads(key, k=True) | |
value = self.split_heads(value) | |
a = self._attn(query, key, value) | |
a = self.merge_heads(a) | |
a = self.c_proj(a) | |
a = self.resid_dropout(a) | |
return a | |
class MLP(nn.Module): | |
def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd) | |
super(MLP, self).__init__() | |
nx = config.n_embd | |
self.c_fc = Conv1D(n_state, 1, nx) | |
self.c_proj = Conv1D(nx, 1, n_state) | |
self.act = ACT_FNS[config.afn] | |
self.dropout = nn.Dropout(config.resid_pdrop) | |
def forward(self, x): | |
h = self.act(self.c_fc(x)) | |
h2 = self.c_proj(h) | |
return self.dropout(h2) | |
class Block(nn.Module): | |
def __init__(self, n_ctx, config, scale=False): | |
super(Block, self).__init__() | |
nx = config.n_embd | |
self.attn = Attention(nx, n_ctx, config, scale) | |
self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon) | |
self.mlp = MLP(4 * nx, config) | |
self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon) | |
def forward(self, x): | |
a = self.attn(x) | |
n = self.ln_1(x + a) | |
m = self.mlp(n) | |
h = self.ln_2(n + m) | |
return h | |
class OpenAIGPTLMHead(nn.Module): | |
""" Language Model Head for the transformer """ | |
def __init__(self, model_embeddings_weights, config): | |
super(OpenAIGPTLMHead, self).__init__() | |
self.n_embd = config.n_embd | |
self.set_embeddings_weights(model_embeddings_weights) | |
def set_embeddings_weights(self, model_embeddings_weights): | |
embed_shape = model_embeddings_weights.shape | |
self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False) | |
self.decoder.weight = model_embeddings_weights # Tied weights | |
def forward(self, hidden_state): | |
# Truncated Language modeling logits (we remove the last token) | |
# h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd) | |
lm_logits = self.decoder(hidden_state) | |
return lm_logits | |
class OpenAIGPTMultipleChoiceHead(nn.Module): | |
""" Classifier Head for the transformer """ | |
def __init__(self, config): | |
super(OpenAIGPTMultipleChoiceHead, self).__init__() | |
self.n_embd = config.n_embd | |
# self.multiple_choice_token = multiple_choice_token | |
self.dropout = nn.Dropout2d(config.resid_pdrop) # To reproduce the noise_shape parameter of TF implementation | |
self.linear = nn.Linear(config.n_embd, 1) | |
nn.init.normal_(self.linear.weight, std=0.02) | |
nn.init.normal_(self.linear.bias, 0) | |
def forward(self, hidden_states, mc_token_ids): | |
# Classification logits | |
# hidden_state (bsz, num_choices, seq_length, hidden_size) | |
# mc_token_ids (bsz, num_choices) | |
mc_token_ids = mc_token_ids.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, -1, hidden_states.size(-1)) | |
# (bsz, num_choices, 1, hidden_size) | |
multiple_choice_h = hidden_states.gather(2, mc_token_ids).squeeze(2) | |
# (bsz, num_choices, hidden_size) | |
multiple_choice_h = self.dropout(multiple_choice_h.transpose(1, 2)).transpose(1, 2) | |
multiple_choice_logits = self.linear(multiple_choice_h).squeeze(-1) | |
# (bsz, num_choices) | |
return multiple_choice_logits | |
class OpenAIGPTPreTrainedModel(nn.Module): | |
""" An abstract class to handle weights initialization and | |
a simple interface for dowloading and loading pretrained models. | |
""" | |
def __init__(self, config, *inputs, **kwargs): | |
super(OpenAIGPTPreTrainedModel, self).__init__() | |
if not isinstance(config, OpenAIGPTConfig): | |
raise ValueError( | |
"Parameter config in `{}(config)` should be an instance of class `OpenAIGPTConfig`. " | |
"To create a model from a pretrained model use " | |
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format( | |
self.__class__.__name__, self.__class__.__name__ | |
) | |
) | |
self.config = config | |
def init_weights(self, module): | |
""" Initialize the weights. | |
""" | |
if isinstance(module, (nn.Linear, nn.Embedding)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
elif isinstance(module, LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
if isinstance(module, nn.Linear) and module.bias is not None: | |
module.bias.data.zero_() | |
def set_num_special_tokens(self, num_special_tokens): | |
pass | |
def from_pretrained( | |
cls, pretrained_model_name_or_path, num_special_tokens=None, state_dict=None, cache_dir=None, from_tf=False, *inputs, **kwargs | |
): | |
""" | |
Instantiate a OpenAIGPTPreTrainedModel from a pre-trained model file or a pytorch state dict. | |
Download and cache the pre-trained model file if needed. | |
Params: | |
pretrained_model_name_or_path: either: | |
- a str with the name of a pre-trained model to load selected in the list of: | |
. `openai-gpt` | |
- a path or url to a pretrained model archive containing: | |
. `openai_gpt_config.json` a configuration file for the model | |
. `pytorch_model.bin` a PyTorch dump of a OpenAIGPTModel instance | |
- a path or url to a pretrained model archive containing: | |
. `bert_config.json` a configuration file for the model | |
. a series of NumPy files containing OpenAI TensorFlow trained weights | |
from_tf: should we load the weights from a locally saved TensorFlow checkpoint | |
cache_dir: an optional path to a folder in which the pre-trained models will be cached. | |
state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models | |
*inputs, **kwargs: additional input for the specific Bert class | |
(ex: num_labels for BertForSequenceClassification) | |
""" | |
if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP: | |
archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path] | |
config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path] | |
else: | |
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME) | |
config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME) | |
# redirect to the cache, if necessary | |
try: | |
resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir) | |
resolved_config_file = cached_path(config_file, cache_dir=cache_dir) | |
except EnvironmentError: | |
logger.error( | |
"Model name '{}' was not found in model name list ({}). " | |
"We assumed '{}' was a path or url but couldn't find files {} and {} " | |
"at this path or url.".format( | |
pretrained_model_name_or_path, ", ".join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()), pretrained_model_name_or_path, | |
archive_file, config_file | |
) | |
) | |
return None | |
if resolved_archive_file == archive_file and resolved_config_file == config_file: | |
logger.info("loading weights file {}".format(archive_file)) | |
logger.info("loading configuration file {}".format(config_file)) | |
else: | |
logger.info("loading weights file {} from cache at {}".format( | |
archive_file, resolved_archive_file)) | |
logger.info("loading configuration file {} from cache at {}".format( | |
config_file, resolved_config_file)) | |
# Load config | |
config = OpenAIGPTConfig.from_json_file(resolved_config_file) | |
logger.info("Model config {}".format(config)) | |
# Instantiate model. | |
model = cls(config, *inputs, **kwargs) | |
if state_dict is None and not from_tf: | |
state_dict = torch.load(resolved_archive_file, map_location='cpu') | |
if from_tf: | |
# Directly load from a TensorFlow checkpoint (stored as NumPy array) | |
return load_tf_weights_in_openai_gpt(model, resolved_archive_file) | |
old_keys = [] | |
new_keys = [] | |
for key in state_dict.keys(): | |
new_key = None | |
if key.endswith(".g"): | |
new_key = key[:-2] + ".weight" | |
elif key.endswith(".b"): | |
new_key = key[:-2] + ".bias" | |
elif key.endswith(".w"): | |
new_key = key[:-2] + ".weight" | |
if new_key: | |
old_keys.append(key) | |
new_keys.append(new_key) | |
for old_key, new_key in zip(old_keys, new_keys): | |
state_dict[new_key] = state_dict.pop(old_key) | |
missing_keys = [] | |
unexpected_keys = [] | |
error_msgs = [] | |
# copy state_dict so _load_from_state_dict can modify it | |
metadata = getattr(state_dict, "_metadata", None) | |
state_dict = state_dict.copy() | |
if metadata is not None: | |
state_dict._metadata = metadata | |
def load(module, prefix=""): | |
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) | |
module._load_from_state_dict( | |
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs | |
) | |
for name, child in module._modules.items(): | |
if child is not None: | |
load(child, prefix + name + ".") | |
start_model = model | |
if hasattr(model, "transformer") and all(not s.startswith('transformer.') for s in state_dict.keys()): | |
start_model = model.transformer | |
load(start_model, prefix="") | |
if len(missing_keys) > 0: | |
logger.info( | |
"Weights of {} not initialized from pretrained model: {}".format(model.__class__.__name__, missing_keys) | |
) | |
if len(unexpected_keys) > 0: | |
logger.info( | |
"Weights from pretrained model not used in {}: {}".format(model.__class__.__name__, unexpected_keys) | |
) | |
if len(error_msgs) > 0: | |
raise RuntimeError( | |
"Error(s) in loading state_dict for {}:\n\t{}".format(model.__class__.__name__, "\n\t".join(error_msgs)) | |
) | |
# Add additional embeddings for special tokens if needed | |
# This step also make sure we are still sharing the output and input embeddings after loading weights | |
model.set_num_special_tokens(num_special_tokens if num_special_tokens is not None else config.n_special) | |
return model | |
class OpenAIGPTModel(OpenAIGPTPreTrainedModel): | |
"""OpenAI GPT model ("Improving Language Understanding by Generative Pre-Training"). | |
OpenAI GPT use a single embedding matrix to store the word and special embeddings. | |
Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]... | |
Special tokens need to be trained during the fine-tuning if you use them. | |
The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function. | |
The embeddings are ordered as follow in the token embeddings matrice: | |
[0, ---------------------- | |
... -> word embeddings | |
config.vocab_size - 1, ______________________ | |
config.vocab_size, | |
... -> special embeddings | |
config.vocab_size + config.n_special - 1] ______________________ | |
where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is: | |
total_tokens_embeddings = config.vocab_size + config.n_special | |
You should use the associate indices to index the embeddings. | |
Params: | |
config: a OpenAIGPTConfig class instance with the configuration to build a new model | |
Inputs: | |
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length] | |
were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[ | |
`position_ids`: an optional torch.LongTensor with the same shape as input_ids | |
with the position indices (selected in the range [0, config.n_positions - 1[. | |
`token_type_ids`: an optional torch.LongTensor with the same shape as input_ids | |
You can use it to add a third type of embedding to each input token in the sequence | |
(the previous two being the word and position embeddings). | |
The input, position and token_type embeddings are summed inside the Transformer before the first | |
self-attention block. | |
Outputs: | |
`hidden_states`: the encoded-hidden-states at the top of the model | |
as a torch.FloatTensor of size [batch_size, sequence_length, hidden_size] | |
(or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids) | |
Example usage: | |
```python | |
# Already been converted into BPE token ids | |
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) | |
config = modeling_openai.OpenAIGPTConfig() | |
model = modeling_openai.OpenAIGPTModel(config) | |
hidden_states = model(input_ids) | |
``` | |
""" | |
def __init__(self, config): | |
super(OpenAIGPTModel, self).__init__(config) | |
num_tokens = config.vocab_size + config.n_special | |
self.tokens_embed = nn.Embedding(num_tokens, config.n_embd) | |
self.positions_embed = nn.Embedding(config.n_positions, config.n_embd) | |
self.drop = nn.Dropout(config.embd_pdrop) | |
block = Block(config.n_ctx, config, scale=True) | |
self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)]) | |
self.apply(self.init_weights) | |
# nn.init.normal_(self.embed.weight, std=0.02) | |
def set_num_special_tokens(self, num_special_tokens): | |
" Update input embeddings with new embedding matrice if needed " | |
if self.config.n_special == num_special_tokens: | |
return | |
# Update config | |
self.config.n_special = num_special_tokens | |
# Build new embeddings and initialize all new embeddings (in particular the special tokens) | |
old_embed = self.tokens_embed | |
self.tokens_embed = nn.Embedding(self.config.total_tokens_embeddings, self.config.n_embd) | |
self.tokens_embed.to(old_embed.weight.device) | |
self.init_weights(self.tokens_embed) | |
# Copy word embeddings from the previous weights | |
self.tokens_embed.weight.data[:self.config.vocab_size, :] = old_embed.weight.data[:self.config.vocab_size, :] | |
def forward(self, input_ids, position_ids=None, token_type_ids=None): | |
if position_ids is None: | |
# This was used when we had a single embedding matrice from position and token embeddings | |
# start = self.config.vocab_size + self.config.n_special | |
# end = start + input_ids.size(-1) | |
# position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device) | |
position_ids = torch.arange(input_ids.size(-1), dtype=torch.long, device=input_ids.device) | |
position_ids = position_ids.unsqueeze(0).expand_as(input_ids) | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_ids.size(-1)) | |
position_ids = position_ids.view(-1, position_ids.size(-1)) | |
inputs_embeds = self.tokens_embed(input_ids) | |
position_embeds = self.positions_embed(position_ids) | |
if token_type_ids is not None: | |
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) | |
token_type_embeds = self.tokens_embed(token_type_ids) | |
else: | |
token_type_embeds = 0 | |
# Add the position information to the input embeddings | |
# h = e.sum(dim=2) | |
hidden_states = inputs_embeds + position_embeds + token_type_embeds | |
for block in self.h: | |
hidden_states = block(hidden_states) | |
output_shape = input_shape + (hidden_states.size(-1),) | |
return hidden_states.view(*output_shape) | |
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel): | |
"""OpenAI GPT model with a Language Modeling head ("Improving Language Understanding by Generative Pre-Training"). | |
OpenAI GPT use a single embedding matrix to store the word and special embeddings. | |
Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]... | |
Special tokens need to be trained during the fine-tuning if you use them. | |
The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function. | |
The embeddings are ordered as follow in the token embeddings matrice: | |
[0, ---------------------- | |
... -> word embeddings | |
config.vocab_size - 1, ______________________ | |
config.vocab_size, | |
... -> special embeddings | |
config.vocab_size + config.n_special - 1] ______________________ | |
where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is: | |
total_tokens_embeddings = config.vocab_size + config.n_special | |
You should use the associate indices to index the embeddings. | |
Params: | |
config: a OpenAIGPTConfig class instance with the configuration to build a new model | |
Inputs: | |
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length] | |
were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[ | |
`position_ids`: an optional torch.LongTensor with the same shape as input_ids | |
with the position indices (selected in the range [0, config.n_positions - 1[. | |
`token_type_ids`: an optional torch.LongTensor with the same shape as input_ids | |
You can use it to add a third type of embedding to each input token in the sequence | |
(the previous two being the word and position embeddings). | |
The input, position and token_type embeddings are summed inside the Transformer before the first | |
self-attention block. | |
`lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length] | |
with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss | |
is only computed for the labels set in [0, ..., vocab_size] | |
Outputs: | |
if `lm_labels` is not `None`: | |
Outputs the language modeling loss. | |
else: | |
`lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, total_tokens_embeddings] | |
(or more generally [d_1, ..., d_n, total_tokens_embeddings] were d_1 ... d_n are the dimension of input_ids) | |
Example usage: | |
```python | |
# Already been converted into BPE token ids | |
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) | |
config = modeling_openai.OpenAIGPTConfig() | |
model = modeling_openai.OpenAIGPTLMHeadModel(config) | |
lm_logits = model(input_ids) | |
``` | |
""" | |
def __init__(self, config): | |
super(OpenAIGPTLMHeadModel, self).__init__(config) | |
self.transformer = OpenAIGPTModel(config) | |
self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config) | |
self.apply(self.init_weights) | |
def set_num_special_tokens(self, num_special_tokens): | |
""" Update input and output embeddings with new embedding matrice | |
Make sure we are sharing the embeddings | |
""" | |
self.transformer.set_num_special_tokens(num_special_tokens) | |
self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight) | |
def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None): | |
hidden_states = self.transformer(input_ids, position_ids, token_type_ids) | |
lm_logits = self.lm_head(hidden_states) | |
if lm_labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = lm_logits[..., :-1, :].contiguous() | |
shift_labels = lm_labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss(ignore_index=-1) | |
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), | |
shift_labels.view(-1)) | |
return loss | |
return lm_logits | |
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel): | |
"""OpenAI GPT model with a Language Modeling and a Multiple Choice head ("Improving Language Understanding by Generative Pre-Training"). | |
OpenAI GPT use a single embedding matrix to store the word and special embeddings. | |
Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]... | |
Special tokens need to be trained during the fine-tuning if you use them. | |
The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function. | |
The embeddings are ordered as follow in the token embeddings matrice: | |
[0, ---------------------- | |
... -> word embeddings | |
config.vocab_size - 1, ______________________ | |
config.vocab_size, | |
... -> special embeddings | |
config.vocab_size + config.n_special - 1] ______________________ | |
where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is: | |
total_tokens_embeddings = config.vocab_size + config.n_special | |
You should use the associate indices to index the embeddings. | |
Params: | |
config: a OpenAIGPTConfig class instance with the configuration to build a new model | |
Inputs: | |
`input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length] with the BPE token | |
indices selected in the range [0, total_tokens_embeddings[ | |
`mc_token_ids`: a torch.LongTensor of shape [batch_size, num_choices] with the index of the token from | |
which we should take the hidden state to feed the multiple choice classifier (usually last token of the sequence) | |
`position_ids`: an optional torch.LongTensor with the same shape as input_ids | |
with the position indices (selected in the range [0, config.n_positions - 1[. | |
`token_type_ids`: an optional torch.LongTensor with the same shape as input_ids | |
You can use it to add a third type of embedding to each input token in the sequence | |
(the previous two being the word and position embeddings). | |
The input, position and token_type embeddings are summed inside the Transformer before the first | |
self-attention block. | |
`lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, num_choices, sequence_length] | |
with indices selected in [-1, 0, ..., total_tokens_embeddings]. All labels set to -1 are ignored (masked), the loss | |
is only computed for the labels set in [0, ..., total_tokens_embeddings] | |
`multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size] | |
with indices selected in [0, ..., num_choices]. | |
Outputs: | |
if `lm_labels` and `multiple_choice_labels` are not `None`: | |
Outputs a tuple of losses with the language modeling loss and the multiple choice loss. | |
else: a tuple with | |
`lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, total_tokens_embeddings] | |
`multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices] | |
Example usage: | |
```python | |
# Already been converted into BPE token ids | |
input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]]]) # (bsz, number of choice, seq length) | |
mc_token_ids = torch.LongTensor([[2], [1]]) # (bsz, number of choice) | |
config = modeling_openai.OpenAIGPTConfig() | |
model = modeling_openai.OpenAIGPTLMHeadModel(config) | |
lm_logits, multiple_choice_logits = model(input_ids, mc_token_ids) | |
``` | |
""" | |
def __init__(self, config): | |
super(OpenAIGPTDoubleHeadsModel, self).__init__(config) | |
self.transformer = OpenAIGPTModel(config) | |
self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config) | |
self.multiple_choice_head = OpenAIGPTMultipleChoiceHead(config) | |
self.apply(self.init_weights) | |
def set_num_special_tokens(self, num_special_tokens): | |
""" Update input and output embeddings with new embedding matrice | |
Make sure we are sharing the embeddings | |
""" | |
self.transformer.set_num_special_tokens(num_special_tokens) | |
self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight) | |
def forward(self, input_ids, mc_token_ids, lm_labels=None, mc_labels=None, token_type_ids=None, position_ids=None): | |
hidden_states = self.transformer(input_ids, position_ids, token_type_ids) | |
lm_logits = self.lm_head(hidden_states) | |
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids) | |
losses = [] | |
if lm_labels is not None: | |
shift_logits = lm_logits[..., :-1, :].contiguous() | |
shift_labels = lm_labels[..., 1:].contiguous() | |
loss_fct = CrossEntropyLoss(ignore_index=-1) | |
losses.append(loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))) | |
if mc_labels is not None: | |
loss_fct = CrossEntropyLoss() | |
losses.append(loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1))) | |
if losses: | |
return losses | |
return lm_logits, mc_logits | |