|
from crawl4ai.extraction_strategy import * |
|
from crawl4ai.crawler_strategy import * |
|
import asyncio |
|
from pydantic import BaseModel, Field |
|
|
|
url = r'https://openai.com/api/pricing/' |
|
|
|
class OpenAIModelFee(BaseModel): |
|
model_name: str = Field(..., description="Name of the OpenAI model.") |
|
input_fee: str = Field(..., description="Fee for input token for the OpenAI model.") |
|
output_fee: str = Field(..., description="Fee for output token for the OpenAI model.") |
|
|
|
from crawl4ai import AsyncWebCrawler |
|
|
|
async def main(): |
|
|
|
async with AsyncWebCrawler() as crawler: |
|
result = await crawler.arun( |
|
url=url, |
|
word_count_threshold=1, |
|
extraction_strategy= LLMExtractionStrategy( |
|
|
|
provider= "groq/llama-3.1-70b-versatile", api_token = os.getenv('GROQ_API_KEY'), |
|
schema=OpenAIModelFee.model_json_schema(), |
|
extraction_type="schema", |
|
instruction="From the crawled content, extract all mentioned model names along with their " \ |
|
"fees for input and output tokens. Make sure not to miss anything in the entire content. " \ |
|
'One extracted model JSON format should look like this: ' \ |
|
'{ "model_name": "GPT-4", "input_fee": "US$10.00 / 1M tokens", "output_fee": "US$30.00 / 1M tokens" }' |
|
), |
|
|
|
) |
|
print("Success:", result.success) |
|
model_fees = json.loads(result.extracted_content) |
|
print(len(model_fees)) |
|
|
|
with open(".data/data.json", "w", encoding="utf-8") as f: |
|
f.write(result.extracted_content) |
|
|
|
asyncio.run(main()) |
|
|