|
import argparse |
|
import os |
|
import torch |
|
import torch.nn.functional as F |
|
import json |
|
from segment_anything_volumetric import sam_model_registry |
|
from network.model import SegVol |
|
from data_process.demo_data_process import process_ct_gt |
|
import monai.transforms as transforms |
|
from utils.monai_inferers_utils import sliding_window_inference, generate_box, select_points, build_binary_cube, build_binary_points, logits2roi_coor |
|
from utils.visualize import draw_result |
|
|
|
def set_parse(): |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--test_mode", default=True, type=bool) |
|
parser.add_argument("--resume", type = str, default = '') |
|
parser.add_argument("-infer_overlap", default=0.5, type=float, help="sliding window inference overlap") |
|
parser.add_argument("-spatial_size", default=(32, 256, 256), type=tuple) |
|
parser.add_argument("-patch_size", default=(4, 16, 16), type=tuple) |
|
parser.add_argument('-work_dir', type=str, default='./work_dir') |
|
|
|
parser.add_argument('--demo_config', type=str, required=True) |
|
parser.add_argument("--clip_ckpt", type = str, default = './config/clip') |
|
args = parser.parse_args() |
|
return args |
|
|
|
def dice_score(preds, labels): |
|
assert preds.shape[0] == labels.shape[0], "predict & target batch size don't match\n" + str(preds.shape) + str(labels.shape) |
|
predict = preds.view(1, -1) |
|
target = labels.view(1, -1) |
|
if target.shape[1] < 1e8: |
|
predict = predict.cuda() |
|
target = target.cuda() |
|
predict = torch.sigmoid(predict) |
|
predict = torch.where(predict > 0.5, 1., 0.) |
|
|
|
tp = torch.sum(torch.mul(predict, target)) |
|
den = torch.sum(predict) + torch.sum(target) + 1 |
|
dice = 2 * tp / den |
|
|
|
if target.shape[1] < 1e8: |
|
predict = predict.cpu() |
|
target = target.cpu() |
|
return dice |
|
|
|
def zoom_in_zoom_out(args, segvol_model, image, image_resize, gt3D, gt3D_resize, categories=None): |
|
logits_labels_record = {} |
|
image_single_resize = image_resize |
|
image_single = image[0,0] |
|
ori_shape = image_single.shape |
|
for item_idx in range(len(categories)): |
|
|
|
label_single = gt3D[0][item_idx] |
|
label_single_resize = gt3D_resize[0][item_idx] |
|
|
|
if torch.sum(label_single) == 0: |
|
print('No object, skip') |
|
continue |
|
|
|
text_single = categories[item_idx] if args.use_text_prompt else None |
|
if categories is not None: print(f'inference |{categories[item_idx]}| target...') |
|
points_single = None |
|
box_single = None |
|
if args.use_point_prompt: |
|
point, point_label = select_points(label_single_resize, num_positive_extra=3, num_negative_extra=3) |
|
points_single = (point.unsqueeze(0).float().cuda(), point_label.unsqueeze(0).float().cuda()) |
|
binary_points_resize = build_binary_points(point, point_label, label_single_resize.shape) |
|
if args.use_box_prompt: |
|
box_single = generate_box(label_single_resize).unsqueeze(0).float().cuda() |
|
binary_cube_resize = build_binary_cube(box_single, binary_cube_shape=label_single_resize.shape) |
|
|
|
|
|
|
|
print('--- zoom out inference ---') |
|
print(f'use text-prompt [{text_single!=None}], use box-prompt [{box_single!=None}], use point-prompt [{points_single!=None}]') |
|
with torch.no_grad(): |
|
logits_global_single = segvol_model(image_single_resize.cuda(), |
|
text=text_single, |
|
boxes=box_single, |
|
points=points_single) |
|
|
|
|
|
logits_global_single = F.interpolate( |
|
logits_global_single.cpu(), |
|
size=ori_shape, mode='nearest')[0][0] |
|
|
|
|
|
if args.use_point_prompt: |
|
binary_points = F.interpolate( |
|
binary_points_resize.unsqueeze(0).unsqueeze(0).float(), |
|
size=ori_shape, mode='nearest')[0][0] |
|
if args.use_box_prompt: |
|
binary_cube = F.interpolate( |
|
binary_cube_resize.unsqueeze(0).unsqueeze(0).float(), |
|
size=ori_shape, mode='nearest')[0][0] |
|
zoom_out_dice = dice_score(logits_global_single.squeeze(), label_single.squeeze()) |
|
logits_labels_record[categories[item_idx]] = ( |
|
zoom_out_dice, |
|
image_single, |
|
points_single, |
|
box_single, |
|
logits_global_single, |
|
label_single) |
|
print(f'zoom out inference done with zoom_out_dice: {zoom_out_dice:.4f}') |
|
if not args.use_zoom_in: |
|
continue |
|
|
|
|
|
|
|
min_d, min_h, min_w, max_d, max_h, max_w = logits2roi_coor(args.spatial_size, logits_global_single) |
|
if min_d is None: |
|
print('Fail to detect foreground!') |
|
continue |
|
|
|
|
|
image_single_cropped = image_single[min_d:max_d+1, min_h:max_h+1, min_w:max_w+1].unsqueeze(0).unsqueeze(0) |
|
global_preds = (torch.sigmoid(logits_global_single[min_d:max_d+1, min_h:max_h+1, min_w:max_w+1])>0.5).long() |
|
|
|
assert not (args.use_box_prompt and args.use_point_prompt) |
|
|
|
prompt_reflection = None |
|
if args.use_box_prompt: |
|
binary_cube_cropped = binary_cube[min_d:max_d+1, min_h:max_h+1, min_w:max_w+1] |
|
prompt_reflection = ( |
|
binary_cube_cropped.unsqueeze(0).unsqueeze(0), |
|
global_preds.unsqueeze(0).unsqueeze(0) |
|
) |
|
if args.use_point_prompt: |
|
binary_points_cropped = binary_points[min_d:max_d+1, min_h:max_h+1, min_w:max_w+1] |
|
prompt_reflection = ( |
|
binary_points_cropped.unsqueeze(0).unsqueeze(0), |
|
global_preds.unsqueeze(0).unsqueeze(0) |
|
) |
|
|
|
|
|
with torch.no_grad(): |
|
logits_single_cropped = sliding_window_inference( |
|
image_single_cropped.cuda(), prompt_reflection, |
|
args.spatial_size, 1, segvol_model, args.infer_overlap, |
|
text=text_single, |
|
use_box=args.use_box_prompt, |
|
use_point=args.use_point_prompt, |
|
) |
|
logits_single_cropped = logits_single_cropped.cpu().squeeze() |
|
logits_global_single[min_d:max_d+1, min_h:max_h+1, min_w:max_w+1] = logits_single_cropped |
|
zoom_in_dice = dice_score(logits_global_single.squeeze(), label_single.squeeze()) |
|
logits_labels_record[categories[item_idx]] = ( |
|
zoom_in_dice, |
|
image_single, |
|
points_single, |
|
box_single, |
|
logits_global_single, |
|
label_single) |
|
print(f'===> zoom out dice {zoom_out_dice:.4f} -> zoom-out-zoom-in dice {zoom_in_dice:.4f} <===') |
|
return logits_labels_record |
|
|
|
def inference_single_ct(args, segvol_model, data_item, categories): |
|
segvol_model.eval() |
|
image, gt3D = data_item["image"].float(), data_item["label"] |
|
image_zoom_out, gt3D__zoom_out = data_item["zoom_out_image"].float(), data_item['zoom_out_label'] |
|
|
|
logits_labels_record = zoom_in_zoom_out( |
|
args, segvol_model, |
|
image.unsqueeze(0), image_zoom_out.unsqueeze(0), |
|
gt3D.unsqueeze(0), gt3D__zoom_out.unsqueeze(0), |
|
categories=categories) |
|
|
|
|
|
if args.visualize: |
|
for target, values in logits_labels_record.items(): |
|
dice_score, image, point_prompt, box_prompt, logits, labels = values |
|
print(f'{target} result with Dice score {dice_score:.4f} visualizing') |
|
draw_result(target + f"-Dice {dice_score:.4f}", image, box_prompt, point_prompt, logits, labels, args.spatial_size, args.work_dir) |
|
|
|
def main(args): |
|
gpu = 0 |
|
torch.cuda.set_device(gpu) |
|
|
|
sam_model = sam_model_registry['vit'](args=args) |
|
segvol_model = SegVol( |
|
image_encoder=sam_model.image_encoder, |
|
mask_decoder=sam_model.mask_decoder, |
|
prompt_encoder=sam_model.prompt_encoder, |
|
clip_ckpt=args.clip_ckpt, |
|
roi_size=args.spatial_size, |
|
patch_size=args.patch_size, |
|
test_mode=args.test_mode, |
|
).cuda() |
|
segvol_model = torch.nn.DataParallel(segvol_model, device_ids=[gpu]) |
|
|
|
|
|
if os.path.isfile(args.resume): |
|
|
|
loc = 'cuda:{}'.format(gpu) |
|
checkpoint = torch.load(args.resume, map_location=loc) |
|
segvol_model.load_state_dict(checkpoint['model'], strict=True) |
|
print("loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch'])) |
|
|
|
|
|
with open(args.demo_config, 'r') as file: |
|
config_dict = json.load(file) |
|
ct_path, gt_path, categories = config_dict['demo_case']['ct_path'], config_dict['demo_case']['gt_path'], config_dict['categories'] |
|
|
|
|
|
data_item = process_ct_gt(ct_path, gt_path, categories, args.spatial_size) |
|
|
|
|
|
args.use_zoom_in = True |
|
args.use_text_prompt = True |
|
args.use_box_prompt = True |
|
args.use_point_prompt = False |
|
args.visualize = False |
|
|
|
inference_single_ct(args, segvol_model, data_item, categories) |
|
|
|
if __name__ == "__main__": |
|
args = set_parse() |
|
main(args) |
|
|