|
import os |
|
import streamlit as st |
|
import requests |
|
from transformers import pipeline |
|
import openai |
|
from langchain import LLMChain, PromptTemplate |
|
from langchain import HuggingFaceHub |
|
|
|
|
|
import warnings |
|
warnings.filterwarnings("ignore") |
|
|
|
api_token = os.getenv('H_TOKEN') |
|
|
|
|
|
def img2txt(url): |
|
print("Initializing captioning model...") |
|
captioning_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") |
|
|
|
print("Generating text from the image...") |
|
text = captioning_model(url, max_new_tokens=20)[0]["generated_text"] |
|
|
|
print(text) |
|
return text |
|
|
|
|
|
|
|
model = "tiiuae/falcon-7b-instruct" |
|
llm = HuggingFaceHub( |
|
huggingfacehub_api_token = api_token, |
|
repo_id = model, |
|
verbose = False, |
|
model_kwargs = {"temperature":0.2, "max_new_tokens": 4000}) |
|
|
|
def generate_story(scenario, llm): |
|
template= """You are a story teller. |
|
You get a scenario as an input text, and generates a short story out of it. |
|
Context: {scenario} |
|
Story: |
|
""" |
|
prompt = PromptTemplate(template=template, input_variables=["scenario"]) |
|
|
|
chain = LLMChain(prompt=prompt, llm=llm) |
|
story = chain.predict(scenario=scenario) |
|
start_index = story.find("Story:") + len("Story:") |
|
|
|
|
|
story = story[start_index:].strip() |
|
return story |
|
|
|
|
|
|
|
def txt2speech(text): |
|
print("Initializing text-to-speech conversion...") |
|
API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits" |
|
headers = {"Authorization": f"Bearer {api_token }"} |
|
payloads = {'inputs': text} |
|
|
|
response = requests.post(API_URL, headers=headers, json=payloads) |
|
|
|
with open('audio_story.mp3', 'wb') as file: |
|
file.write(response.content) |
|
|
|
|
|
|
|
|
|
def main(): |
|
st.set_page_config(page_title="π¨ Image-to-Audio Story π§", page_icon="πΌοΈ") |
|
st.title("Turn the Image into Audio Story") |
|
|
|
|
|
uploaded_file = st.file_uploader("# π· Upload an image...", type=["jpg", "jpeg", "png"]) |
|
|
|
|
|
st.sidebar.markdown("# LLM Inference Configuration Parameters") |
|
top_k = st.sidebar.number_input("Top-K", min_value=1, max_value=100, value=5) |
|
top_p = st.sidebar.number_input("Top-P", min_value=0.0, max_value=1.0, value=0.8) |
|
temperature = st.sidebar.number_input("Temperature", min_value=0.1, max_value=2.0, value=1.5) |
|
|
|
if uploaded_file is not None: |
|
|
|
bytes_data = uploaded_file.read() |
|
with open("uploaded_image.jpg", "wb") as file: |
|
file.write(bytes_data) |
|
|
|
st.image(uploaded_file, caption='πΌοΈ Uploaded Image', use_column_width=True) |
|
|
|
|
|
with st.spinner("## π€ AI is at Work! "): |
|
scenario = img2txt("uploaded_image.jpg") |
|
story = generate_story(scenario, llm) |
|
txt2speech(story) |
|
|
|
st.markdown("---") |
|
st.markdown("## π Image Caption") |
|
st.write(scenario) |
|
|
|
st.markdown("---") |
|
st.markdown("## π Story") |
|
st.write(story) |
|
|
|
st.markdown("---") |
|
st.markdown("## π§ Audio Story") |
|
st.audio("audio_story.mp3") |
|
|
|
if __name__ == '__main__': |
|
main() |