yuvaranianandhan24's picture
Update app.py
0997900 verified
import streamlit as st
import pytesseract
from tempfile import NamedTemporaryFile
from langchain_community.document_loaders import PyPDFLoader
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain import HuggingFaceHub
from PIL import Image
import os
def main():
st.title("Invoice Entity Extractor πŸ“š")
uploaded_file = st.sidebar.file_uploader("Upload a PDF file", type="pdf")
uploaded_image = st.sidebar.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
if uploaded_file is not None:
process_pdf(uploaded_file)
elif uploaded_image is not None:
process_image(uploaded_image)
api_token = os.getenv('HF_TOKEN')
def process_pdf(uploaded_file):
# Process the uploaded PDF file
with NamedTemporaryFile(delete=False) as temp_file:
temp_file.write(uploaded_file.read())
temp_file_path = temp_file.name
loader = PyPDFLoader(temp_file_path)
pages = loader.load()
st.write(f"Number of pages: {len(pages)}")
for page in pages:
st.write(page.page_content)
model = "meta-llama/Meta-Llama-3-8B-Instruct"
llm = HuggingFaceHub(
huggingfacehub_api_token = api_token,
repo_id = model,
verbose = False,
model_kwargs = {"temperature":0.01, "max_new_tokens": 128})
template = """Extract invoice number, name of organization, address, date,
Qty, Rate, Tax, Amount {pages}
Output: entity: type
"""
prompt_template = PromptTemplate(input_variables=["pages"], template=template)
chain = LLMChain(llm=llm, prompt=prompt_template)
result = chain.run(pages=pages[0].page_content)
st.write("Extracted entities:")
entities = result.strip().split("\n")
table_data = [line.split(":") for line in entities]
st.table(table_data)
def process_image(uploaded_image):
# Process the uploaded image using OCR
image = Image.open(uploaded_image)
text = pytesseract.image_to_string(image)
st.write("Extracted text from the image:")
st.write(text)
# Apply entity extraction logic to the extracted text
#llm = CTransformers(model="llama-2-7b-chat.ggmlv3.q4_0.bin", model_type="llama",
#config={'max_new_tokens': 128, 'temperature': 0.01})
model = "llama-2-7b-chat.ggmlv3.q4_0.bin"
llm = HuggingFaceHub(
huggingfacehub_api_token = api_token,
repo_id = model,
verbose = False,
model_kwargs = {"temperature":0.01, "max_new_tokens": 128})
template = """Extract invoice number, name of organization, address, date,
Qty, Rate, Tax, Amount {text}
Output: entity: type
"""
prompt_template = PromptTemplate(input_variables=["text"], template=template)
chain = LLMChain(llm=llm, prompt=prompt_template)
result = chain.run(text)
st.write("Extracted entities:")
entities = result.strip().split("\n")
table_data = [line.split(":") for line in entities]
st.table(table_data)
if __name__ == "__main__":
main()