yuvaranianandhan24 commited on
Commit
64189af
·
verified ·
1 Parent(s): bc0dc85

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +99 -0
app.py CHANGED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate
3
+ from llama_index.llms.huggingface import HuggingFaceInferenceAPI
4
+ from dotenv import load_dotenv
5
+ from llama_index.embeddings.huggingface import HuggingFaceEmbedding
6
+ from llama_index.core import Settings
7
+ import os
8
+ import base64
9
+
10
+ # Load environment variables
11
+ load_dotenv()
12
+
13
+ # Configure the Llama index settings
14
+ Settings.llm = HuggingFaceInferenceAPI(
15
+ model_name="google/gemma-1.1-7b-it",
16
+ tokenizer_name="google/gemma-1.1-7b-it",
17
+ context_window=3900,
18
+ token=os.getenv("HF_TOKEN"),
19
+ max_new_tokens=1000,
20
+ generate_kwargs={"temperature": 0.1},
21
+ )
22
+ Settings.embed_model = HuggingFaceEmbedding(
23
+ model_name="BAAI/bge-small-en-v1.5"
24
+ )
25
+
26
+ # Define the directory for persistent storage and data
27
+ PERSIST_DIR = "./db"
28
+ DATA_DIR = "data"
29
+
30
+ # Ensure data directory exists
31
+ os.makedirs(DATA_DIR, exist_ok=True)
32
+ os.makedirs(PERSIST_DIR, exist_ok=True)
33
+
34
+ def displayPDF(file):
35
+ with open(file, "rb") as f:
36
+ base64_pdf = base64.b64encode(f.read()).decode('utf-8')
37
+ pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>'
38
+ st.markdown(pdf_display, unsafe_allow_html=True)
39
+
40
+ def data_ingestion():
41
+ documents = SimpleDirectoryReader(DATA_DIR).load_data()
42
+ storage_context = StorageContext.from_defaults()
43
+ index = VectorStoreIndex.from_documents(documents)
44
+ index.storage_context.persist(persist_dir=PERSIST_DIR)
45
+
46
+ def handle_query(query):
47
+ storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
48
+ index = load_index_from_storage(storage_context)
49
+ chat_text_qa_msgs = [
50
+ (
51
+ "user",
52
+ """You are a Q&A assistant named CHAt_WITH_PDF, created by Yuvarani. You have a specific response programmed for when users specifically ask about your creator, Yuvarani. The response is: "I was created by Yuvarani, an enthusiast in Artificial Intelligence. She is dedicated to solving complex problems and delivering innovative solutions. With a strong focus on machine learning, deep learning, Python, generative AI, NLP, and computer vision, She is passionate about pushing the boundaries of AI to explore new possibilities." For all other inquiries, your main goal is to provide answers as accurately as possible, based on the instructions and context you have been given. If a question does not match the provided context or is outside the scope of the document, kindly advise the user to ask questions within the context of the document.
53
+ Context:
54
+ {context_str}
55
+ Question:
56
+ {query_str}
57
+ """
58
+ )
59
+ ]
60
+ text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
61
+ query_engine = index.as_query_engine(text_qa_template=text_qa_template)
62
+ answer = query_engine.query(query)
63
+
64
+ if hasattr(answer, 'response'):
65
+ return answer.response
66
+ elif isinstance(answer, dict) and 'response' in answer:
67
+ return answer['response']
68
+ else:
69
+ return "Sorry, I couldn't find an answer."
70
+
71
+
72
+ # Streamlit app initialization
73
+ st.title("Chat with your PDF 🦜📄")
74
+ st.markdown("chat here👇")
75
+
76
+ if 'messages' not in st.session_state:
77
+ st.session_state.messages = [{'role': 'assistant', "content": 'Hello! Upload a PDF and ask me anything about its content.'}]
78
+
79
+ with st.sidebar:
80
+ st.title("Menu:")
81
+ uploaded_file = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button")
82
+ if st.button("Submit & Process"):
83
+ with st.spinner("Processing..."):
84
+ filepath = "data/saved_pdf.pdf"
85
+ with open(filepath, "wb") as f:
86
+ f.write(uploaded_file.getbuffer())
87
+ # displayPDF(filepath) # Display the uploaded PDF
88
+ data_ingestion() # Process PDF every time new file is uploaded
89
+ st.success("Done")
90
+
91
+ user_prompt = st.chat_input("Ask me anything about the content of the PDF:")
92
+ if user_prompt:
93
+ st.session_state.messages.append({'role': 'user', "content": user_prompt})
94
+ response = handle_query(user_prompt)
95
+ st.session_state.messages.append({'role': 'assistant', "content": response})
96
+
97
+ for message in st.session_state.messages:
98
+ with st.chat_message(message['role']):
99
+ st.write(message['content'])